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Abstract— Thalamus is a very important part of the human
brain. It has been reported to act as a relay for the messaging
taking place between the cortical and sub-cortical regions of
the brain. In the present study, we analyze the functional
network between both hemispheres of the brain with the
focus on thalamus. We used conditional Granger causality
(CGC) and time-resolved partial directed coherence (tPDC) to
investigate the functional connectivity. Results of CGC analysis
revealed the asymmetry between connection strengths of the
bilateral thalamus. Upon testing the functional connectivity of
the default-mode network (DMN) at low-frequency fluctuations
(LFF) and comparing coherence vectors using Spearman’s rank
correlation, we found that thalamus is a better source for the
signals directed towards the contralateral regions of the brain,
however, when thalamus acts as sink, it is a better sink for
signals generated from ipsilateral regions of the brain.

I. INTRODUCTION

One of the most interesting features of the human brain
is that it is nearly always active. It has been reported that
the difference between the amount of energy consumed by
the brain during evoked tasks and during rest is minimal
[1]. This fact makes the analysis of the brain at resting state
almost as important as its analysis during some neuronal
task. Discovery of default-mode network (DMN) paced the
quest for better understanding of human brain at rest [2]
[3]. Default-mode network is turned-off whenever the brain
is subjected to carry out an evoked task. Parts of DMN
include precuneus, pre-frontal cortex, medical pre-frontal
cortex and parietal cortex [3]. Moreover, DMN is primarily
characterized by low-frequency fluctuations (LFF), typically
in the range of (0.01-0.1 Hz) [4]. These LFF are distinct
from physiological artifacts like respiratory (0.1-0.5 Hz) and
cardiac rhythms (0.6-1.2 Hz) [4].
Functional magnetic-resonance imaging (fMRI), introduced
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in 1990 by S. Ogawa, is one of the promising modalities
to measure the brain activity [5]. Exploiting the magnetic
properties of the Hydrogen atoms in human blood, fMRI
is able to localize the brain activity even in the sub-cortical
regions of the brain. However, fMRI has a very low temporal
resolution. One deciding factor for the temporal resolution
of fMRI is the repetition time (TR), the acquisition time
between two successive fMRI volumes. Typically, fMRI has
a TR of about 2 seconds. This means that fMRI can sample
data roughly at around 0.5 Hz, and the ultimate resolve-
able maximum frequency in fMRI data will be half of the
sampling rate according to the Nyquist criterion. Because of
the low frequency range of LFF, these frequencies can be
effectively analyzed using fMRI modality.
Nowadays, it is very vital to understand the causal functional
networks within the brain. Various methods exist to analyze
such causality within the brain. Methods like structural
equation modeling (SEM), and dynamic causal modeling
(DCM) have traditionally been applied to fMRI data for such
directionality analysis [17]. Such methods, though being able
to quantify causality at neuronal level, are always based on
some a-priori assumptions about the anatomical networks
[17]. This factor limits their application and interpretation
of their results. The methods based on multivariate auto-
regressive modeling (MVAR) are independent of any such
presumption. They are reported to be a viable approach for
causal analysis of the brain signals [6] [7].

II. METHODS

Multivariate auto-regressive modeling is based on mod-
eling the subjected data with a set of auto-regressive (AR)
equations. The employment of such models to time series
can facilitate the application of causal analysis methods, i.e.,
Granger causality (GC). The principle behind causality is
that, if the inclusion of past values of a first time series
improves the estimation of the second time series, then the
first time series is “Granger causing” the second time series
[8] [9]. Mathematically, GC can be described by considering
equation (1), where linear regression is used to estimate
present value of time series x using its own past values:

x(t) =

p∑
j=1

a1x(t− j) + ε1(t). (1)

Here, a1 is the AR coefficient, and ε1(t) is the residual
noise. Moreover, the noise variance for the equation (1)
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above can be given as

σ2
Model1 =

[
var(ε1(t))

]
. (2)

Now we assume that, in the same model, we have an
additional information as time series z. This additional time
series is also contributing towards the estimation of time
series x as given in equation (3) below, and vice-versa, as
described in equation (4):

x(t) =

p∑
j=1

a2x(t− j) +
p∑

j=1

b2z(t− j) + ε2(t). (3)

z(t) =

p∑
j=1

c2x(t− j) +
p∑

j=1

d2z(t− j) + ε3(t). (4)

The corresponding variance and co-variance matrix for
above model can be given as:

σ2
Model2 =

[
var(ε2(t)) cov(ε2(t), ε3(t))

cov(ε3(t), ε2(t)) var(ε3(t))

]
. (5)

Now, if by inclusion of time series z the variance of
error term ε(t) is reduced, than we say that time series z
is “Granger causing” time series x. An empirical expression
for the calculation of GC can be given as [9]

Fz→x = ln

[
var(ε1(t))

var(ε2(t))

]
. (6)

Granger causality gives a scalar value, showing the extent
of causality from one signal to the other signal. However,
in biomedical-signal analysis, we are usually interested in
signals corresponding to the certain frequencies, e.g., in
the alpha frequency band (8-13 Hz). Time-resolved partial
directed coherence (tPDC) is a method, based on multi-
variate auto-regressive modeling, that can quantify causal
information between two signals corresponding to a certain
frequency. In addition to this frequency information, tPDC
also has the ability to show the time dynamics of such causal
connections. A mathematical expression for tPDC can be
derived by considering a general auto-regressive (AR) model
with order p as follows:

xi(t) =

r=p∑
r=1

aij,rxj(t− r) + ε(t). (7)

Equation (7) refers to a stationary process, in which time
series xj is causing time series xi; p is the model order, and
aij are the causal coefficients that can be found by using
techniques like Burg’s method or Yule-Walker equations. Af-
ter estimation of the causal coefficients they are transformed
into the Fourier domain and their normalization yields the
following expression of the partial directed coherence (PDC),

|πi←j(ω)| =
|Aij(ω)|√∑
k |Akj(ω)|2

. (8)

In equation (8), πi←j(ω) is the magnitude of partial directed
coherence from time series xj to xi at frequency ω. Aij is
the Fourier transform of the causal coefficients aij . Due to

the above stationary assumption, the model coefficients aij
do not evolve over the course of time; however, for non-
stationary signals, such coefficients have to be time-varying
and their estimation should be updated regularly. One way
of estimating time-varying coefficients is by using a dual-
extended Kalman filter (DEKF). After estimation of coeffi-
cients, PDC is calculated at each time and finally all PDC
coherence vectors are concatenated to give a time-frequency
plot of tPDC. Further details about the implementation of
DEKF can be found elsewhere [8]. One important factor
is to determine, how many coefficients will be sufficient
to describe the AR model of the subjected time series.
Algorithms such as, Akaike’s information criterion (AIC)
or the Bayesian information criterion (BIC) can be used
to determine the optimum model order. Empirically, AIC,
which is based on minimizing Kullback-Leibler information
entropy between fitted mode and observed data, can be
described by the expression [10] as

AIC = −2 lnLmax + 2k. (9)

In equation (9), Lmax is the maximum likelihood of the
model and k is the number of parameters in the fitted model.
In the present study AIC was used to estimate the optimum
model order.

III. DATA ACQUISITION

Resting state fMRI was recorded from 11 healthy subjects
(Mean age 25 years, four males) for 10 minutes. BOLD-
sensitive MRI was performed with a 3-Tesla MR scan-
ner (Philips, the Netherlands). A single-shot T1-weighted,
gradient-echo planar imaging sequence was used for fMRI
(TR = 2500 ms, TE = 45 ms, 32 slices, 64 x 64 matrix, slice
thickness = 3.5 mm, FOV = 200 mm, flip angle = 90). A
total of 240 fMRI volumes were acquired in 10 minutes.
All fMRI volumes were re-aligned to the very first volume
of recording to remove any motion artifacts occurred during
the course of recording. Moreover, the volumes were also
normalized to bring all volumes in standard subspace by
minimizing the sum of square differences between vol-
umes to be normalized and the standard template image.
Finally, smoothing was performed by convolving all volumes
with a Gaussian kernel of full width at half maximum
(FWHM) to suppress noise. No temporal pre-processing
was performed for fMRI volumes except discarding the
first 10 recorded volumes to allow for magnetic saturation
effects. All pre-processing was performed using SPM08
toolbox (http://www.fil.ion.ucl.ac.uk/spm). Afterwards using
toolbox of “Data preprocessing assistant for resting state
fMRI advanced” (DPARSFA), we extracted time courses
from 10 regions of the brain, namely, bi-lateral parietal
cortex, precuneus, prefrontal cortex, medial frontal cortex,
and thalamus [15] [16]. Details about the MNI coordinates
of all these regions are given in Table I.

In order to extract the time courses, spheres with radius
of 7mm was assumed at these MNI coordinates, and local
maximum was found using a custom code in MATLAB.
Afterwards, this maximum is considered as center of a sphere
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TABLE I
MNI COORDINATES OF BRAIN REGIONS ON BOTH LEFT AND RIGHT

HEMISPHERE OF THE BRAIN.

Region Left (MNI) Right (MNI)
Parietal 30, -60, 57 -31, -58, 57

Prefrontal 32, 37, 39 -34, 37, 39
Medial frontal cortex 7, 58, 21 -6, 59, 21

Thalamus 10, -40, -14 -18, -40, -14
Precuneus 21, -62, 14 -19, -62, 14

with radius 3mm and time series were extracted from this
sphere using DPARSFA. The temporal mean of the time
series was removed and they were de-trended. The optimum
model order was estimated and conditional Granger causality
was applied to two sets of five time series (both left and right
hemisphere of the brain separately). The optimum model
order was fixed for all subjects; moreover, consistency of the
applied model was tested by comparing the correlation struc-
tures of the actual data and the simulated data with similar
parameters. A toolbox for Granger-causalality connectivity
analysis was used for calculation of conditional Granger
causality (CGC) [11]. Moreover, as a test of significance,
Bonferroni correction was applied to CGC values. After
conditional-Granger causality analysis, time-resolved partial
directed coherence (tPDC) was applied on five time series
from each hemispheres separately. Low-frequency fluctua-
tions (LFF) (0.01-0.1 Hz) were taken as reference frequency
band and coherence time-dynamics vectors corresponding to
LFF were extracted for each connection from both left and
right hemispheres. The LFF band is not affected by the phys-
iological artifacts. The vectors from both hemispheres were
compared to each other using Spearman’s rank correlation
to see whether the dynamics in each hemisphere are similar
or not. The Spearman’s rank correlation was chosen because
the data came from a non-Gaussian distribution.

IV. RESULTS

For the CGC analysis of resting state fMRI, we focused
on thalamus and took it as a main node and analyzed the
connectivity network with reference to it. We did this owing
to the significance of thalamus in the brain. We took the mean
of the connection strengths of the regions of the brain which
lie at the rear part of the head, i.e., parietal and precuneus,
and termed it as ’back’; and also for frontal regions, i.e.,
prefrontal and medial frontal cortex, and termed it as ’front’.
Analysis of CGC on these three regions of the brain yielded
the functional network as shown in Fig. 1.

The causality network as revealed in Fig. 1. shows that
all regions of the brain have bi-directional connections with
the thalamus in their respective hemispheres. To further
quantify this observation, we took the mean of all the CGC
connections going to and coming from thalamus in both left
and right hemispheres. The values are shown in Table II.

As we can see now, there is a difference in the symmetry
of the connections coming out and going towards thalamus
in the right and left hemisphere. In the right hemisphere,
the strength of connections coming from thalamus is large

Fig. 1. Conditional Granger causality results for both hemispheres. Bi-
directional connections exist between thalamus and other cortical regions.
Asymmetry between strength of connections going to and coming from
thalamus between left and right thalamus can also be seen.

TABLE II
AVERAGE CONNECTION STRENGTH OF CONNECTIONS ORIGINATING

AND TERMINATING AT THALAMUS IN BOTH HEMISPHERES.

Left Hemisphere Right Hemisphere
From Thalamus 0.163 0.1815

To Thalamus 0.1965 0.145
Overall connection strength 0.175 0.1675

than those of going towards thalamus. However, in left hemi-
sphere the strength of connections going towards thalamus
is large than that of coming out of thalamus. Afterwards we
applied tPDC on five time series within each hemisphere.
We extracted the coherence vectors from the time-frequency
plot of tPDC corresponding to the LFF frequency band.
The connections in each hemisphere were compared using
Spearman’s rank correlation. Within each hemisphere, the
highest number of positive significant correlations was ob-
served when thalamus acts as a sink for all the connections
originating from all ipsilateral regions. However, when tha-
lamus is considered as a source, then smaller number of
positive correlations was observed between thalamus and the
ipsilateral regions of the hemisphere. Afterwards we replaced
the thalamus in each hemisphere with the contralateral
thalamus. Now large number of positive correlations was
observed when thalamus acts as a source of connections for
all contralateral regions of the brain. The smaller number
of positive correlations was observed when thalamus was
considered as sink of the signals from contralateral regions
of the brain. For Spearman’s rank correlation, the p-value
was set to 0.05. All nodes in the left hemisphere except
thalamus are termed left cortex, and all nodes in the right
hemisphere are termed right cortex. Blue lines in Fig. 2. show
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the high number of positive significant correlations, meaning
time dynamics of tPDC vector on either side, between
same connections, of the brain are similar; however, pink
lines show a low number of positive significant correlations,
showing dissimilar time dynamics of tPDC vectors.

Fig. 2. Number of positive correlations between coherence vectors in left
and right hemisphere. Thalamus is better sink for ipsilateral regions and
better source for contralateral regions of the brain.

V. CONCLUSIONS

In our study we analyzed the causality in resting-state
fMRI data with focus on thalamus. For simple causality,
we used conditional Granger causality and observed the
asymmetry between left and right hemispheres. The method
CGC quantifies the causality by one scalar value showing
the strength of connection. The tPDC method, however, can
reveal the frequency and time dynamics of causal networks.
Hence by using the tPDC we can overcome the limita-
tion of CGC and analyze the DMN at the LFF frequency
band. Results show that thalamus is a better sink for the
connections originating from the ipsilateral regions of the
brain. However, when thalamus works as a source, it is a
better source for contralateral regions of the brain. Such
asymmetry between thalamo-cortical connections could be
due to the difference in number of neurons and volume
between bilateral thalamus [12]. Moreover, previous studies
have shown that the visual cortex, at least, has dissimilar
connectivity with both thalamus of the brain [13]. Due to the
difference in anatomy of human brain, thalamus is is reported
to have predominantly ipsilateral cortical connections [14],
which is in line with our results where thalamus acts as

source of connection. However, in order to better understand
the functional significance of thalamus, further analyses need
to be undertaken.
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