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Abstract— Given a time series of data points, as obtained
in biosignal monitoring, the change point problem poses the
question of identifying times of sudden variations in the
parameters of the underlying data distribution. We propose
a method for extracting a discrete set of change points from
directional data. Our method is based on a combination of the
Bayesian change point model (CPM) and the Viterbi algorithm.
We apply our method to the instantaneous phase information
of single-trial auditory event-related potentials (ERPs) in a long
term habituation paradigm. We have seen in previous studies
that the phase information enters a phase-locked mode with
respect to the repetition of a stimulus in the state of focused
attention. With adaptation to an insignificant stimulus, attention
tends to trail away (long-term habituation), characterized by
changes in the phase signature, becoming more diffuse across
trials. We demonstrate that the proposed method is suitable
for detecting the effects of long-term habituation on phase
information in our experimental setting.

I. INTRODUCTION

Changes in time series data often are the consequence
of changes in the parameters of underlying generative pro-
cesses. In the case of discrete changes, these changes are also
known as change points. The detection of change points in
time series data is a valuable tool in many different areas
such as stock market prices, analysis of DNA sequences,
neural activities in the brain. Recently the exploration of syn-
chronicity either within one or between multiple functional
parts of the brain when exposed to a particular repetitive
stimulus has gained a lot of interest [5], [2]. As an example in
[3], it is found that phase information of ERPs enter a precise
’phase-locking’ mode under the repetition of a stimulus.
When habituation – an endogenous brain mechanism respon-
sible for the drift of attention away from a stimulus – occurs,
the synchronicity of phase information diminishes. This can
be observed numerically in a decrease in the concentration
of phases on the unit circle. We investigate the application
of a Bayesian change point algorithm for directional data
for estimating long-term habituation in auditory ERPs. We
apply it to measurements taken under two stimuli of distinct
saliency. The stimuli were presented as pure sinus tones of
1kHz at levels of 50dB (SPL) and 100dB (SPL), representing
an insignificant and an aversive stimulus due to their inten-
sity. Contrasting the insignificant stimulus, the aversive tone
is likely to bind attention over time, allowing only little or no
long-term habituation at all. In this work we detect the most
likely time at which the phase information begins to diffuse,
such that the parameters of an underlying generative model

before and after the detected time are significantly different.
In case of phase data for 50dB (SPL) responses, we expect
a unique change in the concentration of phase information
due to the habituation effect, whereas in 100dB (SPL) such
effects are not expected due to the aversiveness of stimulus
intensity.

II. METHODS

We briefly explain the forward-backward Bayesian change
point algorithm from [1] for detecting regime changes in
the generative process underlying the given directional time
series data. A change point divides the set of data points
Θ := {θ1, . . . , θN}, θi ∈ [−π, π) into non-overlapping
partitions p. The data points in each partition are indepen-
dently and identically distributed (i.i.d) from a corresponding
probability distribution p(θt|λp) with parameters λp. We
assume a priori distribution over the interval length between
change points, which is called the hazard rate. The number
of time steps since the last change point is called the run-
length. The hazard rate or the rate at which change points
occur, can be a function of the run-length. Our aim is to
estimate the posterior distribution over the run-lengths at
each time t. We denote the length of the current run at time t
as rt, and θ(rt=i)

t = (θt−i:t) indicates the set of observations
associated with the run-length rt. The run-length rt can
either increase by one at any time step with respect to the
run-length at t − 1, that is rt = rt−1 + 1 indicating a
non-change point step, or reset to zero in case of a change
point rt = 0. We start by formulating the problem in terms
of a forward-backward algorithm using the Bayes’ rule as
follows:

p (rt|Θ) =
p (Θ|rt) p (rt)

p (Θ)

=
p (Θt+1:T |Θ1:t, rt) p (Θ1:t|rt) p (rt)

p (Θ)

=
p (Θt+1:T |Θ1:t, rt) p (rt,Θ1:t)

p (Θ)

We write p (rt = i|Θ) =
αtiβ

t
i

p(Θ) , with the forward pass
(α-pass) defined as αti = p (rt = i,Θ1:t) and the backward
pass (β-pass) as βti = p (Θt+1:T |rt = i,Θ1:t). In the follow-
ing, we explain the forward and backward passes as proposed
in [1]. For more details see also [6].
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A. The Forward and Backward Pass

The forward pass is described recursively by

αtrt = p (rt,Θ1:t) = p (rt, θt,Θ1:t−1)

= p (θt|rt,Θ1:t−1)
∑
rt−1

p (rt|rt−1) p (rt−1,Θ1:t−1) .

Similarly, the β-pass (backward-pass) is given by

βtrt =
∑
rt+1

p (Θt+2:T |Θ1:t+1, rt+1) p (θt+1|Θ1:t, rt+1) p (rt+1|rt).

We have chosen a von Mises(µ, κ) probability
density function (pdf) for the predictive distribution
p (θt|rt,Θ1:t−1), where µ ∈ [−π, π) and κ > 0 are
respectively the mean and concentration for the relevant
data θ(rt)

t = (θt−rt:t) . The von Mises distribution is one
of the most popular parametric models for the analysis of
circular data that resembles to a normal distribution of
real-valued data.

A conditional prior on the change points, the hazard rate
H(x), is incorporated as

p (rt|rt−1) =


H(rt−1 + 1) if rt = 0

1−H(rt−1 + 1) if rt = rt−1 + 1

0 otherwise,

with H(x) formulated according to [1] as

H(x) =
Pgap(g = x)∑∞
t=x Pgap(g = t)

.

In our problem, we use a Gamma pdf as the prior in order
to assign higher likelihoods to run lengths in a certain range:
Pgap(g = x) = βα

Γ(α)x
α−1 exp(−βx), where α > 0 and β >

0 represent the shape and rate parameters respectively. The
parameters α = 1 and β = 300

α were empirically determined
and correspond to an expected run length of 300 samples.

B. Discrete Change Point Extraction

We have used the forward-backward method to estimate
the posterior distribution over run-lengths p (rt|Θ) at differ-
ent times t. In this section, we derive a method to determine
a single most likely sequence of run-lengths over the whole
time span t = 1, . . . ,M of the observation sequence.

For this we first define a matrix A ∈ RN×N of transition
likelihoods. A given entry ai,j of A corresponds to the a-
priori likelihood for changing from a run length rt = i at
time t to a run length rt+1 = j at t+1. As described before,
only two run lengths at time t+ 1 are possible given rt = i.
Assuming that both cases are equally likely, we define

ai,j =


0.5 if j = i+ 1

0.5 if j = 0

0 otherwise.

The most likely sequence of run-lengths is given by

r̂2, . . . , r̂N = arg max
r′2,...,r

′
N∈{0,··· ,N−1}

( ∏
t∈{2,··· ,N}

ar′t−1,r
′
t
p (rt = r′t|Θ)

)
and defining the initial run-length r̂1 = r′1 = 0. Algorithmi-
cally, we solve this equation by formulating it as a recurrence

relation Wt,k = p (rt = k|Θ) . max
x∈{0,··· ,N−1}

(ax,kWt−1,x)

which can be efficiently computed by a dynamic program-
ming algorithm similar to the Viterbi algorithm (see [7]).

Note that while equal likelihoods for both transitions are
used in the definition of A, the run length likelihoods p(rt =
i|Θ) already incorporate our prior distribution.

The transition matrix ensures that the extracted state
sequence is “valid”, in the sense that a change point is
always a discrete event that resets the run length to 0. It
also ensures that the run length increases by exactly 1 in
the absence of a change point. In contrast, many simpler
techniques, such as taking the maximum likelihood run
length maxi p(rt = i) locally at each time t, do not lead to
a consistent set of run lengths (Fig. 3).

Our approach is equivalent to the Viterbi algorithm (see
[7]) applied to a hidden Markov model defined as follows:

The set of states is given by Q = {q0, . . . , qN−1} where
the state qi corresponds to a run length of i. The state
transition likelihoods are given by our matrix A. We define
the sequence of observations y1, . . . , yN ∈ N as yi = i (an
integer t is observed at time t).

It follows

p(yt|qi) =
p(qi|yt)p(yt)

p(qi)
=
p(rt = i)p(yt)

p(qi)
.

By definition, we have p(yt) = N−1 since each time t ∈
1, . . . , N occurs exactly once in the observations y1, . . . , yN .
If we further assume p(qi) to be uniform, that is p(qi) =
N−1 for every run-length, we get p(yt|qi) = p(rt = i).
The state sequence chosen by the recurrence relation Vt,k =
p(yt|qk) · max

x∈{0,··· ,N -1}
(ax,kVt-1,x) of the Viterbi algorithm is

therefore equivalent to the run-length sequence determined
by our algorithm.

III. EXPERIMENTAL DATA ACQUISITION

The experimental data has been acquired from ten healthy
subjects at Saarland University with no history of hearing
deficits. Each subject received an audiogram test before the
experiment and an audiogram check up after the experiment.
The experiment was performed in a sound-proof room and
subjects had to lie on a bed with their eyes closed. They were
instructed to avoid any motion during the experiment.The
sound stimuli were presented only to the right ear via a
headphone (HDA 200, Sehnheiser) at two different sound
levels of 50dB(SPL) and 100dB(SPL). A break of 3 minutes
was given between the 50dB(SPL) and 100dB(SPL) sound
exposures. The auditory stimuli consisted of pure tones of 1
kHz with a duration of 40ms, and a constant inter-stimulus
interval (ISI) of 1s. The recorded EEG data was sampled at
512Hz.

A. EEG Post-Processing

Let A = {sn ∈ RM : n = 1, 2, . . . , N} be a set of N
sampled ERP single–trials within the time interval [0,M/fs]
(fs is the sampling frequency, M is the number of samples
representing a trial) of a particular experiment. From A we
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Fig. 1: A phase matrix P is represented in (a). We apply the CP algorithm on the
phase information over all single trials at a specified time t. In plot (b) we illustrate
the phase modulations for time t as marked in (a).

can construct the ERP image S ∈ RN×M such that S =
(s1, s2, . . . , sN )T . For a two dimensional denoising of S,
we applied the non–local means scheme as described in [9].
This scheme exploits the event–related activity induced self–
similarity in S for the denoising process. It can be used for
an electrophysiologically well founded denoising of the ERP
single–trials. We use the very same parameters as in [9] for
the numerical experiments in this study.

B. Extraction of Phase Information

For the extraction of the instantaneous phase information,
we employed the continuous wavelet transform as described
in [8]. Let ψa,b(·) = |a|−1/2ψ((·− b)/a)) where ψ ∈ L2(R)
is the wavelet with 0 <

´
R |Ψ(ω)|2|ω|−1dω < ∞ (Ψ(ω) is

the Fourier transform of the wavelet), and a, b ∈ R, a 6= 0.
The wavelet transform Wψ : L2(R) −→ L2(R2, dadb

a2 ) of a
function f ∈ L2(R) with respect to the wavelet ψ is given
by the inner L2-product (Wψf)(a, b) = 〈f, ψa,b〉L2 . We used
the numerical scheme of MITSI for the application of this
concept to our discrete-time ERPs sn (n = 1, 2, . . . , N ),(See
[4]). Note that in the discrete-time version (Wψsn), the
parameters a and b are discretized on a scale-time grid
a1, . . . , aK × b1, . . . , bM . Note also that bm+1 − bm = 1/fs
for the uniformly sampled data with b1 := 0.0ms (stimulus
onset) in the following.

For a fixed scale a and discretized translations bm (m =
1, 2, . . . ,M ), we introduce the mapping Ga : S 7→ P, where
P ∈ RN×M has the entries θn,m = arg ((Wψsn)(a, bm)).
In other words, the n = 1, 2, . . . , N rows of P represent
the instantaneous phase of the EPRs sn for a fixed scale
a. In our numerical experiments, we use the 6th-derivative
of the complex Gaussian as wavelet ψ. It has been shown
that for a physiologically meaningful range of values of
a and b, the phase coherence across the trials pn with
Θ = (θ1,θ2, . . . ,θn)T constitutes a neural correlate of
selective auditory attention ([3]). As in [8], [3] we use
a = 40 for the numerical experiments in this study. Note
that this corresponds to the alpha/theta-border frequency for
the chosen wavelet. An example of phase representation is
shown in Fig. 1.

IV. RESULTS AND DISCUSSION

We first apply the Bayesian CP model combined with the
Viterbi algorithm on generated synthetic data with abrupt
changes. In Fig. 2, we show two examples of two different
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Fig. 2: Detection of change points for simulated circular data. The plot on top (a) shows
the results of the change point detection on synthetic circular data with abrupt changes.
The plot below (b) shows an example of the simulated ERP with the habituation effect.
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Fig. 3: Maximum likelihood run-length values extracted 1) by taking maximum
likelihood values locally at each time (on top), and 2) by using our approach of
applying the Viterbi algorithm to extract the globally most likely sequence of run-
lengths (below).

synthetically generated data samples with abrupt changes. In
the second plot (b) we show the results for a simulated ERP
with the habituation effect.

We then apply the method on the measured ERP phase
information. We analyze the effect of habituation using the
phase information of the different trials at a specific time
of 97ms (equivalent to sample t = 50). The selected time
is chosen to capture the N1-P2 wave complex that typically
appears between 80 to 100ms after the onset of a stimulus.
We illustrate the improvement achieved by applying the
Viterbi algorithm compared to an alternative approach of
picking maximum likelihood run-lengths locally at each trial
in Fig. 3. The local approach suffers from inconsistencies,
such as run length increased of more than 1 at a time, or
falling back to a value other than 0. The run lengths extracted
by our method on the other hand are globally consistent.

We apply the method for all 10 subjects on two different
stimulus levels of 50dB and 100dB. In the context of
habituation, we are interested predominantly in change points
detected due to changes of the von Mises concentration
parameter, rather than the mean. We therefore center the
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Fig. 4: The top row shows the results of the change point algorithm for 50dB SPL data for three subjects. The corresponding 100dB SPL for individual subject is plotted on the
second row.
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Fig. 5: Average run-length value in the maximum likelihood run-length sequence for all
subjects. The 100 dB stimuli consistently lead to higher average run lengths compared
to a 50 dB stimulus. The higher average run length corresponds to fewer change points
in the time series.

phase data to a mean of zero by applying a Gaussian high
pass filter before performing the change point analysis. Fig.
4 shows the detected change points for three subjects at
50dB and 100dB. The change points indicate the time at
which the parameters – specifically the concentration – of
the underlying distribution undergo a significant change. It is
clearly evident that in 100dB stimulus, hardly any changes
due to the high synchronization of phase information can
be detected. However in 50dB stimulus, the changes in the
diffusion of the phase modulations are more tractable and
occur at earlier trials in comparison to the 100dB stimulus.
There may remain fluctuations at later times due to the
sensitization effect with regard to the stimuli, which does
not reflect the habituation effect.

We summarize the results by showing the average over
run-length values in the maximum likelihood run-length
sequence for all subjects in Fig. 5. The 100dB data, which
corresponds to a non-habituation process, exhibits a larger
average run-length value in comparison to 50dB data (habit-
uation). The difference is a consequence of the absence of
change points over long periods (or even entirely) in the case
of 100dB, leading to higher run-length values compared to
the ones reached with the earlier change points in habituation
data.

V. CONCLUSIONS

In this paper we combined the forward-backward Bayesian
change point algorithm from [1] with the Viterbi algorithm
to find the most likely set of discrete change points. Gen-
erally, our method can be applied to detect change points
in directional data. We specifically applied the method to
phase information in the context of a long-term habituation
paradigm. We demonstrated that our approach is capable
of reliably capturing habituation correlates in auditory ERP
signals.
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