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Abstract—Energy resolved photon-counting detectors could 

achieve more than one spectral measurement. The goal of this 

study is to investigate, with experiment, the ability to decompose 

five materials using energy discriminating detectors and 

multiple discriminant analysis (MDA). A small field-of-view 

multi-energy CT system was built. Linear attenuation coefficient 

was considered as features of multiple energy CT. MDA was 

used to decompose five materials with six measurements of the 

energy dependent linear attenuation coefficients. The results of 

the experimental study showed that a CT system based on CdTe 

detectors with MDA can be used to decompose five materials. 

 

I. INTRODUCTION 

All materials has different linear attenuation coefficient 

depending on the X-ray energy [1]. Using these properties, 

materials could be discriminated in computed tomography 

(CT). There are two types of approaches to identify specific 

materials: one is in the projection domain (pre-reconstruction) 

[1, 2] and the other in the image domain (post-reconstruction) 

[3-5]. Although decomposition in the projection domain is 

beneficial to removing the beam hardening effect, the image 

domain is computationally more efficient. In this study, we 

adopted the image domain and assumed that each voxel 

consists of single material. 
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In order to acquire multi-energy X-ray images, the number 

of measurements should be equal or more than the number of 

materials. Due to the imperfections of detector technology, 

previous researches mostly focused on two measurements and 

two materials. Several methods such as sandwich detector and 

fast kV switching have been also utilized as well as the dual 

source methods [6, 7]. These techniques, thus, provide limited 

number of energy bins and energy resolution is inefficient.  

According to the advance of technologies, photon counting 

method has been provided and it has several advantages; the 

most radiation-efficient, low-dose, and multi energy X-ray 

detecting [8]. Due to the usefulness of photon counting 

detector, this method has been conducted by many researchers 

[9-13]. As the previous researchers have shown, multi-energy 

can support to distinguish the materials by exploiting atomic 

reacting to various energy domains. Specifically, functional 

imaging that shows the characteristics of material component, 

not simply X-ray attenuation images, is feasible by using 

multi-energy X-ray images. Additionally, high 

Contrast-to-Noise ratio can be obtained with equal radiation 

dose. 

To decompose the material, k-edge algorithm, least squares 

parameter estimation algorithm, and principal component 

analysis (PCA) algorithm have been implemented [13-15]. 

However, these algorithms have revealed some limitations to 

discriminate between materials. K-edge algorithm cannot be 

applied to materials which do not contain k-edge, and least 

squares estimation decomposition method is vulnerable to 

increased noise, especially in narrow energy bins of 

photon-counting detectors. Furthermore, while PCA 

algorithm have no consideration of any difference in class, 

multiple discriminant analysis (MDA) explicitly show the 

differences between the classes of data [16]. Nevertheless, 

both algorithms represent linear combinations of variables 

that best indicate the data. 
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In this respect, this study aims to present methodology for 

the classification of the materials using MDA. A phantom 

study evaluating the technique’s potential was performed 

discriminating up to five materials in the image domain using 

six energy bins and MDA. 

 

II. MATERIALS AND METHODS 

A. Multi-energy CT System 

We set up a prototype photon-counting CT system. The 

prototype device is presented in Figure 1. This system was 

made of a SourceRay SB-80–500 x-ray generator system 

(Source-Ray Inc., Bohemia, NY) capable of tube currents and 

voltages of 500 μA and 80 kVp, respectively. The x-ray 

source was operated at 500 μA and 80 kVp. The tube had a 40 

μm focal spot size. All images were acquired through a CT 

system built with an energy resolving detector made of CdTe 

crystals. Medipix2 based CdTe detector (XRI-UNO, X-ray 

imatek, Spain) was used in photon counting mode. The energy 

ranges were set at 22-25, 26-29, 30-32, 33-36, 37-40, 41-44 

keV. 

The phantoms were rotated for 360, giving 320 frames per 

scan at 200 ms per frame. Photon counts for each energy were 

obtained with proprietary software (XRI-UNO GUI, X-ray 

imatek, Spain). All images were reconstructed with a FDK 

algorithm with the ramp filter [17]. Flat-field correction and 

ring artifact reduction method was performed on projection 

data [18]. 

Linear attenuation coefficient data acquired with the 

computed tomography from each energy bin E were 

transformed into spectral Hounsfield unit [19] as follows, 
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attenuation of air. Acryl was used as water equivalent material 

to calculate spectral HU. 

B. Multiple Discriminant Analysis 

We considered spectral HU of material as six-dimensional 

feature vector. Then we utilized the feature vector to classify 

the material using MDA algorithm. Let 
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contains all the training samples. Then we can present as 

linear transform as follows, 

 y = W
T
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where x is sample vector and W is linear projection matrix. 

Then intra-class covariance matrix for the number of class, 
c, is as follows, 
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Then the inter-class covariance matrix is as follows, 
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Figure 1. Multi-energy CT experimental system with the detector on the left, 

the rotational stage in the middle, and x-ray tube on the right. 

In order to separate the classes, we found a projection W 
that maximizes the following ratio: 
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Optimal projection matrix W
*
 maximize the inter-class 

variation and minimize the intra-class variation. The 

projection matrix W
*
 was initially calculated from known 

material sample. Finally, discrimination was performed by 

comparing Euclidian distance. 
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C. Phantom 

We fabricated a cylindrical acryl phantom with a 1 cm 

diameter circular cross section (Fig. 2). Inside the phantom, 

the left top contained bone-equivalent solution of 

CaCl2(Calcium chloride), the right top contained gold 

nanoparticle (15 mg/ml), the bottom rows of contrast wells 

contained iodine solution (18.5 mg/ml and 37 mg/ml), 

respectively. 

 
Figure 2. Transverse slice of the phantom scheme with calcium chloride, gold, 

iodine, and acryl cylinder. 

 

 

D. Data analysis and comparison 

The two methods of material discrimination—MDA and 

Calibrated least squares fitting method (CLSF) [15]—were 

evaluated by comparing the results to both the ground truth 

and one another. The evaluation was performed by computing 

a metric that compares the decomposed region to the ground 

truth region from the phantom. The metric (O) can be 

computed as follows, 
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where T is the image of a decomposed image and G is the 

ground truth image. 

 

 

III. RESULTS AND DISCUSSION 

Reconstructed images of the phantom (Fig. 3) showed the 

tendency of attenuation coefficient regarding to energy bins. 

As revealed in Figure 3, higher energy bins 4, 5, and 6 had 

more artifacts caused by poor detector efficiency and low 

photon flux. Ring artifacts were present toward the center of 

the reconstructed images. This effect was more conspicuous in 

some energy bins than others: Energy bins 4, 5, and 6 had 

more ring artifacts than bins 1, 2, and 3. 

 

 

Figure 4 displays graphs of measured HUs for iodine, 

calcium chloride, air, acryl and gold. Remarkably, as can be 

seen in this figure, the HU of calcium chloride and gold 

gradually decreased as expected while the photon energy 

increased, but around the k-edge of iodine (bin 3-4), HU of 

iodine was slightly risen. 

In order to scrutinize the results of discrimination, the 

decomposed images for the MDA method are shown in figure 

5. As this method produced material images which have a 

binary property, these images directly showed the result of the 

assumption that each voxel contains predominantly one 

material. In addition, the material separation algorithm 

implemented properly, whereas some voxels of gold were not 

separated correctly. The discrimination of iodine was found to 

be more precise than calcium chloride, as the k-edge of iodine 

more accurately  identifies the materials within the measured 

energy range. 

The values for the metric (O) are shown in Table 1. As 

shown in this table, the discrimination results are revealed that 

MDA is superior to CLSF in all different materials. 

 

Figure 3. Transverse slices of the phantom for energy bins (a) 1, (b) 2, (c) 3, 

(d) 4, (e) 5, (f) 6. 
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Figure 4. Spectral HU measurements for different substances across the 

images at different energy bin 

 
Figure 5. Decomposed images of calcium chloride (a), gold (b), iodine (c), 

acryl (d), and air (e) using the MDA algorithm. 

 
TABLE I. THE VALUES FOR O TO EVALUATE DISCRIMINATION RESULTS. 

 
Calcium 

chloride 
Gold Iodine Acryl Air 

MDA 0.857 0.717 0.916 0.845 0.924 

CLSF 0.674 0.703 0.775 0.831 0.836 

 

IV. CONCLUSION 

We developed multi-energy CT system using photon 
counting detector. We studied the problem of linear 
dimensionality reduction of the linear attenuation coefficient 
for the task of material classification. The results of the 
experimental study showed that a CT system based on CdTe 
detector with MDA can be used to decompose materials. For 
further research, novel ways of analyzing and observing data 
beyond Hounsfield Units will be needed. 
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