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Abstract— Various methods based on anatomical or mathe-
matical models have been developed to estimate cortical poten-
tials. Among them, the most popular are the surface Laplacians
(SL) and the Electrical Source Imaging (ESI) approaches. In
this paper, we develop an informed method named dipolar
cortical mapping (DCM), aiming to find a balance between
ESI methods based on anatomical models and methods without
strong anatomical priors, such as surface Laplacians. Our
method only uses easily available information on the electrode
position and is based on a physiologically parametrized family
of interpolating functions. Simulation results show that DCM
competes with previously proposed surface Laplacians and with
the model based Minimum Norm Estimates (MNE) computed
with a Boundary Element Model (BEM).

Index Terms— EEG, Cortical Source Mapping, Surface
Laplacians, Electrical Source Imaging

I. INTRODUCTION

Most of the brain activities recorded by scalp EEG are
commonly considered to be those of radially-arrayed cortical
pyramid cells [1] within parts of the cerebral cortex, usually
involved in different cognitive and behavioural functions.
For example, during a given cognitive task, several brain
regions are activated and their identification, beyond its
fundamental interest for brain mapping, is also interesting
for brain computer interfacing (BCI) or clinical applications.
Therefore, it is of high interest to estimate precise maps of
cortical activity from raw scalp recordings.

This task is not obvious due to the noise and of the
smearing effect of skull [2], [3]. Two main trends are to
be distinguished when dealing with non-invasive cortical
source estimation. A first class belongs to the Electrical
Source Imaging (ESI) family of inverse problems. These
methods use a so-called forward model, usually based on a
discretized realistic model of the head, with patient specific
geometry and with standardized conductivity parameters for
the different tissues. The cortical sources are modelled as
current dipoles existing under each mesh vertex of the
discretized cortical surface and their projection on the EEG
electrodes is computed using a forward model [4]. These ESI
methods are based on patient-dependent propagation models
leading to high computational costs, and are prone to errors
due to inherent modelling imprecisions. A second class of
methods estimate the cortical map directly from the EEG
measurements, with weak or absent priors on the mixing
model such as surface Laplacians (SL), based either on spe-
cific electrode configurations or on second order derivatives
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of (interpolated) scalp potentials. These estimators, acting
as a high-pass spatial filter, eliminate much of the volume
conduction distortion, improves spatial resolution and yields
to a reference-independent estimate of dura (inner skull
surface) potentials [3].

The aim of this paper is to improve and further analyse a
method of dipolar cortical mapping previously introduced
in [5]. The main idea is to impose a plausible smooth
scalp projection constraint for every dipole, formalized as
a basis function belonging to a parametrized family. We
use this constraint to construct a propagation matrix whose
inverse would yield cortical source estimation. We compare
our methods with inverse ESI methods and with popular
surface Laplacians based on spline interpolation techniques
considering spherical [6] and realistic geometry [7].

II. CORTICAL ACTIVITY ESTIMATION

A. Electrical source imaging

If anatomical information is available, we can use
ESI methods which construct and invert patient-dependent
anatomical models. Assume that scalp recordings vector at a
given time instant v can be expressed as a linear combination
of dipole amplitudes s and propagation coefficients or gains
A such that:

v = As (1)

where A(M × P,M � P ) is known as lead-field or gain
matrix. Then the general solution can be found by pseudo-
inverting A:

ŝ = A+v (2)

where A+ = WAT (AWAT )−1 is a pseudo-inverse of A.
As it can be seen, there are an infinity of exact solutions
parametrized by the weights matrix W, and dozens of
source estimation methods can be found in the literature. The
simplest solution, yet adapted for superficial sources such as
the cortical ones, is to simply consider the minimum norm
solution obtained by taking W the identity matrix.

The propagation coefficients embedded in matrix A de-
pend on the geometry of the head (distances and angles
between the cortical surface mesh points, i.e., sources, and
electrodes placed on the scalp) and on the electrical proper-
ties of the head tissues (skull, skin, ...). Under the hypothesis
that the conductivities are constant within a tissue type
(i.e., the tissue is homogeneous and isotropic), [8] states
that wrongly estimated model conductivities do not have
a significant impact on the performance of minimum norm
estimates, except for a possible gain mis-estimation.
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B. Surface Laplacians

Physical considerations about current flow in the scalp,
assuming that the head surface can locally be considered
planar, lead to an estimate of the source below a position
(x, y) on the head given by the surface Laplacian SL [9]:

Lap =
∂2Φ

∂x2
+
∂2Φ

∂y2
(3)

where Φ is the potential at position (x, y) on the surface. The
first proposed Laplacian method [9] estimates directly the SL
at selected sites using only the sampled values of Φ, i.e., the
electrode potentials v. This local estimation is obtained
by computing the difference between the potential at each
electrode site and the average potential of its nearest four
neighbours, provided that the distances between electrodes
and the angles built by the electrodes configuration are
equal [10]. Similar discrete Laplacian estimators, such as
bipolar, quasi-bipolar and tri-polar [11] are based on various
electrode configurations, .

More elaborated global methods depend on two main
factors [10]: geometry and interpolating function. These
methods consist in two steps: the first one interpolates the
recorded scalp potential values v using some spline/radial
basis functions in order to obtain a continuous Φ, while the
second one apply a Laplacian operator similar to the one
in (3), but adapted to the considered geometry. Classical
interpolation solutions vary from spherical splines to thin-
plate RBFs, while derivation assumes a given geometry of the
head model: spherical [6], [12], ellipsoidal [13] or realistic
[14], [7].

Unlike ESI solutions (2), surface Laplacians priors are
based only on geometry and do not depend on any regu-
larization or weight matrix.

III. DIPOLAR CORTICAL MAPPING (DCM)

Our aim is to propose a method taking into account,
like simple SL, only the basic geometrical information of
the electrode positions, but using a more physiologically
plausible interpolation scheme. To construct this interpolator,
our basic assumption is that the potentials decrease with
the square of the distance from the dipolar source, in the
direction of the dipole.

A. One dipole case

Let sk be the amplitude of an equivalent dipole k placed
inside the brain below electrode k, at a given depth dkk and
pointing to it. Then, according to our proposed general rule,
the potential vkk generated by this dipole k on the electrode
k writes:

vkk =
sk

Kd2kk
(4)

where K corresponds to some proportionality constant linked
to the propagation properties of the head volume.

The potential generated by the same dipole on an electrode
j can easily be written as:

vjk =
sk cosαjk

Kd2jk
(5)

where αjk is the angle between the vectors pointing to
electrodes k and j, and djk is the distance between dipole
k and electrode j. In the following, we will focus on the
estimation of the cortical map morphology and ignore the
amplitude information, thus we will simply set K = 1.

Different approximations of djk and cosαjk can be sug-
gested, depending on the hypothesised geometry. A first
approximation is the planar case, proposed in [5]: the
neighbouring sensors with respect to vkk are assumed to
be distributed on a plane orthogonal to the direction of the
dipole. This leads to approximate the distance djk between
the dipole k and a neighbouring sensor j as d2jk = x2jk+d2kk,
hence cosαjk = xjk/djk.Then equation (5) gives the planar
DCMP estimate:

v(xjk) = sk

1
d2
kk(

x2
jk

d2
kk

+ 1
) 3

2

(6)

In other words, given the depth of the dipole dkk and its
amplitude sk, the potential at a point in the plane depends
only on the distance from this point to the electrode above
the dipole.

A more elaborated approximation of the head surface is
the spherical approximation. In this case, αjk and djk can be
expressed with respect to the depth of the dipole dkk and the
radius of the sphere r, which yields to the spherical DCMS
estimate:

v(xjk) = sk
2rdkk − x2jk

2r(d2kk + x2jk(1 − dkk

r ))
3
2

(7)

The approaches described above depend on the depth dkk
below the electrode of the equivalent dipole, which needs to
be given. As we have shown in our previous paper [5], this
parameter influences the size of the activated region on the
cortical surface above and, further, on the scalp: a dipole
(and the corresponding activated cortical surface) will be
visible on several neighbouring electrodes only if dkk is large
enough. It appears then that this parameter should depend
on the spatial sampling of the scalp, thus on the distance
between neighbouring electrodes. Numerical simulations will
be given in the results section.

B. Multiple dipoles case

Up to now, we have only dealt with the potentials gener-
ated by a unique dipole of amplitude sk below the sensor
k. Assuming that we aim to estimate the cortical activity
below each scalp electrode, we need to consider one dipole
per electrode, thus M dipoles. Under the same hypothesis
on the depth and the orientation, the potential at a given
electrode j will write as the sum of the potentials generated
by the k = 1..M dipoles, which writes as a sum of weighted
basis functions h(x):

vj =

M∑
k=1

v(xjk) =

M∑
k=1

h(xjk)sk (8)
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Finally (see also [5]), when considering all electrodes, (8)
can be written in matrix form as:

v = Hs (9)

where v is the measured EEG, the column k of the matrix
H contains the values of the basis function corresponding to
the dipole situated below electrode k evaluated at distances
xjk (j being the index of the row) and the vector s contains
the weights of these different interpolating functions, equal
to the amplitudes of the dipoles that we want to estimate.
Estimating the cortical potentials corresponds then to the
weights vector s estimation and is obtained by simple matrix
inversion:

ŝ = H−1v (10)

C. Building bridges between SL and ESI

It should be highlighted that all previous equations (6)
and (7) can be seen as an interpolation method based
on families of parametrized basis functions, similar to the
radial basis functions (RBFs) used in the surface Laplacian
approaches. In particular, it is interesting to notice that the
planar approximation (6) of the DCM corresponds to the
second order derivative on a plane of a multi-quadric spline.
In other words, our planar DCM solution is equivalent to
a surface Laplacian obtained after interpolating the scalp
potentials using multi-quadric RBFs, parametrized by the
depth dkk, instead of thin-plate splines (the detailed proof
will be presented elsewhere).

This analogy to surface Laplacians can be visualized by
comparing the transform matrix H−1 applied to the mea-
sured potentials v with the simple Hjorth discrete Laplacian
montage from the measured EEG.Indeed, as in the case of
the Hjorth’s Laplacian, the elements of inverted matrix H−1

correspond to the weights given to the electrodes. In the basic
Laplacian the weights are unitary on the diagonal, −1/4 on
the neighbouring electrodes and 0 elsewhere. For the DCM
the weights vary on the diagonal, because of the depth dkk
of the dipole, and on the off-diagonal with respect to the
distance between the electrodes.

On the other hand, if the analogy between DCM and
surface Laplacians appears clearly for the simpler approx-
imations (6), one can notice that the general form (5)
corresponds to an infinite homogeneous and isotropic propa-
gation medium, for which the conductivity information was
discarded, as we are only interested in the morphology of
the cortical map.

IV. SIMULATION AND RESULTS

The aim of this section is to compare the performances
of the proposed DCM methods with both surface Laplacians
and ESI minimum norm inverse solutions.

A. Simulation set-up

A three layer Boundary Element Model (BEM) of the head
was extracted from anatomical MRI using Brainstorm [15],
yielding a mesh where each layer consists of 3242 points.
The electrodes were simulated as a BioSemi sensor cap

of either 64 or 128 electrodes. For source generation we
assumed randomly placed dipole patches on the cortical
layer which corresponds to the upper half of the brain mesh
(1675 dipoles to avoid border effects), oriented radially to
the cortical surface and having random amplitudes. The size
of the patch vary randomly between 20 and 128 mesh points,
corresponding roughly to 2.5 to 20cm2. Potentials v on
the electrodes, as well as the simulated cortical map were
generated by the forward solution through Helsinki BEM
library [16]. We considered both the case of one active patch
per time instant (similar to the unique source in [7]) and the
most complex case of multiple simultaneous activations. We
also considered two noise levels perturbing the electrodes v
by adding white Gaussian noise with signal to noise ratios
(SNR) of 20dB and 10dB (similar to [7]).

To estimate the surface Laplacians we use following MAT-
LAB toolboxes: CSD and SSL. The first provides current
source density estimates using the spherical spline surface
Laplacian algorithm suggested by [6] with the established
computation parameters (50 iterations; m = 4; λ = 10−5)
proposed in [17]. The SSL toolbox provides two estimates:
a spherical approximation based on New Orleans Spline
Laplacians [3] and a realistic case [7].

ESI minimum norm estimates (MNE) were obtained by
pseudo-inverting (2) a realistic BEM model giving the gain
matrix between the cortical surface and the electrodes (either
64 or 128).

DCM values were computed using either (6) or (7). For
the spherical case, we fitted the sphere using FieldTrip [18].
Several values were tested for the depth parameter dkk. It
appears that the best results are obtained when choosing dkk
as the mean distance between electrodes. For the simulated
Biosemi caps of 64 and 128 electrodes used in this study,
dkk corresponds respectively to 27mm and 22mm. Only these
results are presented here.

The considered performance measure was the correlation ρ
between the computed (true) cortical activity s and estimated
cortical activities ŝ by DCM, SL and ESI, all sampled in the
cortical mesh points below the electrodes.

B. Results

The results presented here were obtained after averag-
ing 1000 simulations performed using the set-up described
above. In other words, 1000 random BEM generated cortical
maps were compared with the estimated maps obtained
either by SL, DCM or MNE. Table I) presents the results
for the unique active region and for multiple simultaneous
activations for noise-free measurements and for 2 noise levels
(20dB and 10dB). As it can be seen from table I, all
methods perform badly for noisy signals and high-density
measurements, with at most 69% correlation for CSD (which
in fact overpasses the other methods only in this situation).
Indeed, as the cut-off frequency of the surface Laplacian
(high-pass) filters increases with the spatial density of the
electrodes, the high density montages are more affected by
noise. On the other hand, when the noise is absent, the
estimations are better when the electrode density is high

1125



One Multiple
Inf 20dB 10dB Inf 20dB 10dB

DCMs 84 / 88 84 / 87 72 / 43 84 / 85 83 / 81 65 / 34
DCMp 80 / 80 80 / 79 78 / 64 77 / 79 76 / 76 71 / 57
CSD 70 / 67 70 / 66 70 / 67 68 / 70 69 / 70 68 / 69

SSLsph 81 / 88 82 / 86 69 / 55 83 / 86 83 / 84 64 / 43
SSLgeo 80 / 85 82 / 84 69 / 57 81 / 84 81 / 83 65 / 46

BEM 82 / 90 82 / 88 65 / 41 86 / 90 86 / 86 60 / 29

TABLE I: Correlation percentage ρ between the forward
computed cortical map and the different estimations, with
64 / 128 scalp electrodes

regardless of the method. Finally, another general observation
is that the number of active regions has a relatively low
influence on the results, even if the slightly worse for the
multiple activations case.

Comparing the methods, one can notice that DCMS is
better in no-noise or low-noise cases for all activations using
64 electrodes. For the higher density set-up, SSLsph slightly
performs better in the multiple activations case. Finally, the
fully informed BEM, even if it performs better when the
noise is weak, does not improve significantly the estimation
of cortical activity. An example of different estimations ob-
tained from 128 electrodes in the no-noise situation is given
figure 1. The cortical maps were smoothed for visualization
purposes.

(a) Scalp potential (b) Cortical potential

(c) DCMS (d) MNEBEM (e) SSLgeo

Fig. 1: Forward computed cortical (a) and scalp (b) maps
and the obtained cortical activation estimations (c,d,e)

V. CONCLUSION

The goal of this paper is to propose algorithms based
on simple geometrical assumptions with low computational
cost. As a result we propose here a family of informed
cortical map estimators (Dipolar Cortical Mapping, DCM)
related both to surface Laplacians (SL) and to ESI minimum
norm estimates (MNE). The DCM is based on a family of
parametrized physiologically plausible radial basis functions
that can be seen, depending on the considered approximation,
either as an SL technique or a MNE solution. Besides, it uses
easily available information even in the absence of imaging
modalities, unlike the recently proposed SSL and the MNE

techniques. Our proposed DCM shows good performance
even for simple approximations of the head geometry, such
as planar or spherical and remains reliable when multiple
cortical areas are simultaneously active.

Future work will focus on a elaborating a more for-
mal connection between the MNE, the DCM and the SL
estimations of the cortical activity. Also the performance
of presented methods should be tested in more realistic
noise cases using multiple random noise dipoles. Another
interesting perspective would be to relax the constraints
imposed on the positions of the equivalent cortical dipoles
used by the DCM (i.e., below each EEG electrode) and thus
allow sparser solutions.
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