
  

 

Abstract— Microarray experiments have made 

possible to identify breast cancer marker gene 

signatures. However, gene expression-based signatures 

present limitations because they do not consider 

metabolic role of the genes and are affected by genetic 

heterogeneity across patient cohorts. Considering the 

activity of entire pathways rather than the expression 

levels of individual genes can be a way to exceed these 

limits. We evaluated and compared five methods of 

pathway-level aggregation of gene expression data. Our 

results confirmed the important role of pathway 

expression profile in breast cancer diagnostic 

classification (accuracy >90%).   However, although 

assessed on a limited number of samples and datasets, 

this study shows that using dissimilarity representation 

among patients does not improve the classification of 

pathway-based expression profiles. 

 

I. INTRODUCTION 

In the recent years, microarray gene expression 

experiments identified an increasing number of disease 

markers [1-3]. In Breast Cancer (BC) different gene 

signatures have been identified [4-8] but their 

reproducibility, and overlap is poor.  

These limits can be explained by genetic heterogeneity 

across patients and by the fact that changes in expression of 

the few genes governing cancer development control several 

downstream effectors: these effectors are mainly found in 

different gene signatures [9] and could be involved in 

different pathways. Thus, the identified gene signature can 

only partially represent the  genes involved in the process.  

A way to overcome these limits is to focus on groups of 

genes that fall within common pathways, instead of 

individual genes. In turn, each sub-pathway is a distinct 

functional part within a larger interaction network. Thus, 

sub-pathways could be considered instead of full pathways 

in searching for key classification markers.  

Two types of methods were used to provide pathway 

analysis: i) differentially expressed genes are identified and 

then their principal pathways are selected [e.g. 10]; ii) each 

pathway is examined to find pathways with differentially 

expressed common genes [e.g. 11]. We hypothesized that the 

pathway-based method has several advantages over the 

expression analysis of individual genes: i) the resulting sub-

pathway provide models of the molecular mechanisms 
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underlying cancer; ii) the results give an easy interpretation 

on the function of genes sets for biologist iii) a pathway 

expression profile may be consistent across the samples, 

while expression of individual genes in a pathway may differ 

considerable across samples [12]. There are different 

pathway-level aggregation methods [e.g. 13-16]. This study 

presents an evaluation of 5 pathway-level aggregation 

methods of gene expression data for BC diagnoses.   

   

II. MATERIALS AND METHODS 

A.  Microarray data set 

We used one public BC microarray data set from the Gene 

Expression Omnibus (GEO) database (GSE39004), 

containing 94 BC samples: 47 samples of macro-dissected 

tumor tissue and 47 adjacent noncancerous tissue.  The 

dataset came from the Affymetrix Gene Chip Human Gene 

1.0 ST Arrays platform.  

-Normalization 

Probe cell intensity data was processed by the RMA 

algorithm [17]. 

 

B.  Gene set enrichment analysis 

With the purpose to identify a group of differentially 

expressed genes, enriched for a particular gene set, we used 

biological pathway-based analysis called Gene Set 

Enrichment Analysis (GSEA) [11]. We focused on 403 

biological pathways derived from the KEGG and BioCarta 

pathway database [18]. All probe sets were pre-ranked using 

t-test with respect to their correlation with normal and tumor 

tissue. Then, GSEA analyzed ranked list of genes, and an 

enrichment score (ES) was calculated for a given gene set, 

which indicated if a gene set was found differentially 

expressed between normal and tumor tissue.  

The nominal p-value estimated the statistical significance 

of the enrichment score for a single gene set.  

Several pathways, found differentially expressed, were 

obtained.  

 

C. Pathway expression profiles 

This study compared five pathway-level aggregation 

methods of gene expression data. The five methods were 

grouped into three categories: mean-based of all genes, mean 

based of top SAM genes and dissimilarity distances. 
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-Mean-Based of all genes 

The expression profiles of all the genes, grouped in a 

differentially expressed pathway, were combined by taking 

their mean value. 

 

- Mean based of top SAM genes 

In this method mean expression of a pathway is 

represented by the mean expression of key genes found by 

Significance Analysis of Microarray (SAM) [19] for each 

pathway. Our aim was to select significant genes based on 

differential expression between normal and tumor tissue. 

The genes were considered up/down-regulated if their mean 

expression in tumor samples were significantly higher/lower 

(FDR, q value <0.01) than in normal samples. The genes, as 

found up or down regulated in expression, were identified by 

submitting IDs probes from the HGU133Array to 

Affymetrix through the Netaffxtool 

(www.affymetrix.com/analysis/index.affx). 

In the next phase, we want to define a sub-pathway 

obtained differentially expressed by the GSEA algorithm. 

To find a sub-pathway, we identified key genes that 

satisfy the following two criteria: 1) genes are included in 

SAM analysis, and 2) genes belong to the same differentially 

expressed pathway. 

 

- Dissimilarity distances 

Dissimilarity distances have been proved useful in many 

application fields. Recent studies [20,21] used with success  

dissimilarity representation among patients, considering the 

expression of individual genes. To our knowledge, 

dissimilarity representation is not used in pathway-based 

expression profiles. Our goal is to give a dissimilarity 

representation, which can express, through a function 

D(x,y), the dissimilarity between the mean expression levels 

of altered genes in a pathway for the pair of patients x and y. 

The following ordinary distances (from the R bioDistance 

package [22] were considered: i) Euclidean distance, ii) 

Manhattan distance, iii) Kendall’s τ-distance. 

 

D. Validation 

To evaluate the performance of the pathway level 

aggregation methods we used a machine learning algorithm, 

trained on the identified pathway-based expression profile 

and tested on the ability to differentiate normal and BC 

tissues with respect to the pathway expression profile.   

 

-Machine learning 

A Rapid Miner (RM) workflow (WF) [23] was designed.  

The RM workflow implemented standard Support Vector 

Machine (SVM) algorithm.  The main issues of this 

workflow were characterized by the following processes: 

a) SVM Parameter Optimization. We optimized the 

inference accuracy over a space of given SVM feasible 

learning parameters. The following values were used: 

kernel.γ - from 0 to 5, step 30; kernel.C - from 0 to 5, step 

30; kernel.type ∈ {ANOVA, DOT, RADIAL}. 

b) Cross Validation. The SVM was validated by a k-fold 

cross-validation process. We used k=5, k=10 and k=15. 

The performance of the classification was obtained in 

terms of Accuracy and Balanced Accuracy for the following 

case-control study: normal and tumor samples. Cross 

validation of the classifier was performed for two different 

breast datasets: GSE39004, as previously described, and 

GSE10797 containing 15 breast samples: 10 samples of 

invasive BC and 5 normal breast tissue. This last database 

was used to avoid cohort specific bias.    

 

III. RESULTS 

A.  Gene set enrichment analysis 

We found 2 up-regulated gene sets (p-value <0.01): 

Biocarta G2-cell cycle, Kegg DNA replication, and 5 down-

regulated gene sets (p-value <0.05): Kegg Adipocytokine 

Signaling, Kegg Fatty Acid Metabolism, Biocarta PPARA, 

Kegg WNT Signaling and Biocarta GPCR.  

Table I shows the pathways with the number of genes 

presented. 

TABLE I.  DIFFERENTIALLY EXPRESSED PATHWAYS 

UP REGULATED PATHWAY 

Pathway N° genes p-value 

I:  Biocarta G2-cell cycle 24 <0.01 

II: Kegg DNA replication 36 <0.01 

DOWN REGULATED PATHWAY 

III: Kegg Adipocytokine 

Signaling 

67 <0.05 

IV: Kegg Fatty Acid 

Metabolism 

42 <0.05 

V: Biocarta PPARA 58 <0.05 

VI: Kegg WNT Signaling 151 <0.05 

VII: Biocarta GPCR 37 <0.05 

 

 

B. Pathway-based expression profile 

We obtained a pathway-based expression profiles for the 

seven differentially expressed pathways using the five 

considered pathway-level aggregation methods. 

 

-Mean-Based of all genes 

We obtained pathway expression profiles representing the 

mean expression values of the 24 genes for the I pathway, 36 

genes for the II pathway, 67 genes for the III pathway, 42 

genes for the IV pathway, 58 genes for the V pathway, 151 

genes for the VI pathway and 37 genes for the VII pathway. 

 

- Mean based of top SAM genes  

SAM analysis identified 1974 up-regulated and 1933 

down -regulated genes between normal and tumor samples.  

We found 104 unique key genes included in SAM 

analysis and belonging to the considered differentially 

expressed pathways. Pathways obtained by GSEA analysis 
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contain now a reduced number of genes, as reported in table 

II.   

TABLE II.  PATHWAY-KEY GENES 

UP REGULATED PATHWAY 

Pathway Key Genes p-value 

I: Biocarta G2-cell cycle 10 <0.01 

II: Kegg DNA replication 18 <0.01 

DOWN REGULATED PATHWAY 

III: Kegg Adipocytokine 

Signaling 

18 <0.05 

IV: Kegg Fatty Acid 

Metabolism 

18 <0.05 

V: Biocarta PPARA 16 <0.05 

VI: Kegg WNT Signaling 29 <0.05 

VII: Biocarta GPCR 8 <0.05 

 

We obtained pathway expression profiles representing the 

mean expression values of these key-genes. 

- Dissimilarity distances 

The expression profiles of genes in a pathway were 

combined by taking their mean and for N samples in each 

data sets we obtained NxN dissimilarities matrix.  

 

 
 

Figure 1. Accuracy of each method is plotted on varying of k-cross- 
validation for GSE39004. 

 

 
 

Figure 2. Accuracy of each method is plotted on varying of k-cross- 
validation for GSE10797. 

 

 
 

Figure 3. Balanced accuracy of each method is plotted on varying of k-

cross- validation for GSE39004. 

 

 
 

Figure 4. Balanced accuracy of each method is plotted on varying of k-

cross- validation for GSE10797. 

 

D. Validation 

Results of accuracy of the SVM classification are shown 

in Figure 1-2, for GSE39004 and GSE10797, respectively, 

for the considered case-control study: normal vs tumor.  

Results of balanced accuracy of the SVM classification 

are shown in Figure 3-4, for GSE39004 and GSE10797, 

respectively. The results were shown on varying of k-cross-

validation.  

Both mean of all genes and mean based of top SAM genes 

achieved good results. Mean based of top genes SAM 

slightly improved the performance with respect to mean of 

all genes. Dissimilarity distances don't seem to improve the 

performance of the classifier. Manhattan and Euclidean 

distances don't show considerable differences. Tau distances 

report the worst behavior.    

 

IV. CONCLUSIONS 

In this study, we evaluated and compared five methods of 

pathway-level aggregation of gene expression data.  

The evaluation was performed with respect to accuracy 

and balanced accuracy. The best performances were 

obtained when SAM analysis was applied in a differentially 

expressed pathway. We demonstrated that incorporating 

pathway information into expression gene analysis-based BC 

diagnosis can provide good biological model.   

Among the possible affected pathways, in the upregulated 

BC gene group we found cell cycle and DNA replication 

genes. DNA is constantly subjected to a number of 

surveillance mechanisms that constantly monitor its 

integrity, and control cell cycle progression. In the presence 

of DNA damage, cells activate pathways that lead to cell 

cycle checkpoints activation, DNA repair mechanisms, 

apoptosis and transcription. In cancer, these control 

mechanisms are altered, mainly for mutation in critical 

proteins. For this feature, cancer cells can stimulate their 

own growth, resist to apoptosis, multiply forever and 

stimulate angiogenesis [24]. 

Our pathway analysis revealed that downregulated genes 

belong to i) adipocytokine signaling pathway, ii) Fatty acid 

metabolism; iii) Peroxisome proliferator-activated receptor-
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alpha (PPARA) signaling pathway, iv) WNT signaling 

pathways; v) G-protein-coupled receptor (GPCR) signaling 

pathway. The relation between cancer and metabolic 

disorders was recognized several decades ago. In the last 

years, many groups have been studying systemic adipose 

tissue markers in cancer patients, revealing that high body 

mass index (BMI) values are strongly associated with 

increased incidence of several types of cancer and also 

premalignant lesions [25]. In particular, it has been 

suggested that adipose tissue may support tumor cell growth 

[26]. In fact, adipose tissue-derived factors, as 

adipocytokine, have been shown to influence the behavior of 

tumor cells, i.e. by promoting their proliferation in 

tridimensional structures [27]. It is quite unexpected, thus, to 

find in our analysis BC downregulated genes belonging to 

fatty acid metabolism pathway (ii), to adypocytokine 

signaling molecules (i), to PPARA signaling pathway (iii), 

whose activity increase fatty acid oxidation and decrease 

cytokine levels [28]. Nevertheless, it is still possible that, 

being PPAR pathway involved in the control of ERBB2-

positive stem cells [29], the tumor tissue population 

analyzed in the databases contains mainly ERBB2-negative 

cells or non-stem cells, as demonstrated by the finding of the 

downregulation of WNT pathway genes (iv). Finally, GPCR 

family groups several proteins involved in cell proliferation 

control, promoting tumor cell invasion and metastasis, 

endothelial cell migration, and tumor angiogenesis [30]. Our 

analysis finds GPCR pathway genes to be down-regulated. It 

is possible that the samples considered in the databases are 

mainly non metastatic, while this pathway expression in 

human BC correlates with higher tumor grade and metastatic 

potential [31]. 
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