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Abstract— Electrocorticogram (ECoG) is a promising long-
term signal acquisition platform for brain-computer interface
(BCI) systems such as upper extremity prostheses. Several
studies have demonstrated decoding of arm and finger tra-
jectories from ECoG high-gamma band (80-160 Hz) signals.
In this study, we systematically vary the velocity of three
elementary movement types (pincer grasp, elbow and shoulder
flexion/extension) to test whether the high-gamma band encodes
for the entirety of the movements, or merely the movement
onset. To this end, linear regression models were created for
the durations and amplitudes of high-gamma power bursts and
velocity deflections. One subject with 8×8 high-density ECoG
grid (4 mm center-to-center electrode spacing) participated in
the experiment. The results of the regression models indicated
that the power burst durations varied directly with the move-
ment durations (e.g. R2=0.71 and slope=1.0 s/s for elbow). The
persistence of power bursts for the duration of the movement
suggests that the primary motor cortex (M1) is likely active
for the entire duration of a movement, instead of providing
a marker for the movement onset. On the other hand, the
amplitudes were less co-varied. Furthermore, the electrodes of
maximum R2 conformed to somatotopic arrangement of the
brain. Also, electrodes responsible for flexion and extension
movements could be resolved on the high-density grid. In
summary, these findings suggest that M1 may be directly
responsible for activating the individual muscle motor units,
and future BCI may be able to utilize them for better control
of prostheses.

I. INTRODUCTION

Subdurally-recorded electrocorticogram (ECoG) is a
promising long-term signal acquisition platform for brain-
computer interface (BCI) systems, such as upper extremity
prostheses. Several studies have shown that arm and finger
trajectories [1], [2], [3], [4], [5], [6], [7] can be decoded from
ECoG signals. However, the performance of these decoders
has been modest. Thus, a better understanding of ECoG
motor control may improve the design of trajectory decoders.

Our previous studies [8], [9] have demonstrated that the
power of ECoG in the high-γ band (80-160 Hz) strongly cor-
relates with kinematic parameters of upper extremity move-
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ments. Specifically, the high-γ power bursts have waveforms
that resemble the velocity of elementary arm movements.
However, these experiments did not systematically vary the
movement velocity, and so it remains unclear whether a
high-γ power burst is responsible for the entire duration of
movement or merely encodes for the movement onset. To
this end, the velocity of various elementary upper extremity
movements was systematically varied to better characterize
motor control strategies in ECoG.

II. METHODS

A. Signal Acquisition

This study was approved by the Institutional Review
Board of the Rancho Los Amigos National Rehabilitation
Center. Subjects were recruited from a patient population
undergoing temporary subdural electrode implantation for
epilepsy surgery evaluation. Subject selection was limited
to those with electrodes covering the primary motor cortex
(M1) upper extremity representation area. Up to 64 channels
of ECoG data were recorded using a pair of linked NeXus-32
bioamplifiers (Mind Media, Roermond-Herten, The Nether-
lands), and signals were acquired at a 2048-Hz sample rate
with common average referencing.

B. Experimental Task

A subset of elementary upper extremity movements [10]
was performed on the side contralateral to the ECoG elec-
trode implant: 1. pincer grasp and release (PG); 2. elbow flex-
ion and extension (E); and 3. shoulder forward flexion and
extension (SFE). Prior to each movement, an appropriate sen-
sor to measure angular trajectory was mounted and calibrated
using conventional goniometry. Specifically, the trajectory of
PG was measured by a custom-made electrogoniometer [11],
while E and SFE movements were measured by a gyroscope
(Wii Motion Plus, Nintendo, Kyoto, Japan). The trajectory
signals (position, θ, and velocity, θ̇) were acquired using a
microcontroller unit (Arduino, Smart Projects, Turin, Italy).
ECoG data were synchronized with the trajectory signals
using a common pulse train sent to both acquisition systems.

Each movement type was performed at fast, moderate,
and slow speeds (see Table I for details) as guided by a
video animation representing the moving joint. The video
cued the subjects to fully flex the joint at the specified
speed, followed by holding the joint stationary (idling) for a
specific duration. This was then followed by a full extension
movement and another idling period. The idling periods
were introduced to prevent temporal overlapping of flexion
and extension ECoG features, which we observed in earlier
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TABLE I
SUMMARY OF MOVEMENT TYPES AND SPEEDS. SUBJECTS WERE CUED

TO PERFORM MAXIMUM FLEXION OR EXTENSION FOR THE SPECIFIED

DURATION, AND IDLING WITHOUT RETURNING TO NEUTRAL POSITION.

Movement type Fast Moderate Slow

Pincer Grasp (PG) 0.35 s 0.75 s 1.5 s
Elbow (E) 0.65 s 1.30 s 2.6 s
Shoulder F/E (SFE) 0.75 s 1.5 s 3.0 s

Idle 1.0 s 2.0 s 3.0 s

studies when these movements were executed in succession.
The above cycle was repeated for a total of 40 times for each
elementary movement type. In order to establish a signal
baseline, subjects held the joint at a neutral position for
30 s before and after these video-guided cycles. Note that
subjects familiarized themselves with the task by previewing
the videos.

C. Analysis

As described in [9], the high γ-band power, Pγ , was
obtained by calculating the instantaneous power envelope for
each ECoG electrode:

Pγ(t) = f(x2
γ(t)) (1)

where xγ(t) is the bandpass filtered (80-160 Hz) ECoG
signal, which is squared and then enveloped by a 1.5-Hz
low-pass filter, f(·).

The duration and amplitude of Pγ bursts and θ̇ deflections
during each flexion and extension movement were deter-
mined using criteria described in Fig. 1. Four separate linear
regression models between Pγ and θ̇ were generated for
flexion durations, extension durations, flexion amplitudes,
and extension amplitudes.

III. RESULTS

A 38-year-old male subject undergoing subdural electrode
implantation for epilepsy surgery evaluation participated in
this study. The subject had an 8×8 high-density ECoG
electrode grid (4 cm × 4 cm, 4 mm center-to-center electrode
spacing) placed over the right hemisphere covering the arm
representation area of M1. While the subject completed
all movement tasks, he had a tendency to decompose the
slow PG movements into multiple small movements, and
therefore this dataset was excluded from analysis. The ECoG
grid location is reproduced in Fig. 2. Note that due to the
presence of MRI incompatible metal inside his body, the
ECoG grid could not be visualized using the typical MRI-
CT co-registration procedure [12]. Instead, localization was
performed by co-registering the central sulcus location using
pre- and post-implantation CT scans.

The results of the regression models (summarized in
Fig. 2 and Table II) indicated that the Pγ burst duration
varied directly with the movement duration for E and SFE
movements. However, this relationship was weaker for the
PG movement. Also, the amplitudes of Pγ bursts and θ̇
deflections were less co-varied for all movement types.
Representative scatter plots of these relationships are shown
in Figs. 3 and 4.

TABLE II
THE MAXIMUM COEFFICIENT OF DETERMINATION (R2), SLOPES, AND

MEAN Pγ VALUES FOR EACH LINEAR REGRESSION MODEL OVER THE

M1 AREA. UNITS: s FOR DURATIONS, mad FOR Pγ AMPLITUDES,
mad/(◦/s) FOR SLOPES OF AMPLITUDES. ALL R2 VALUES ARE

STATISTICALLY SIGNIFICANT INCLUDING R2=0.10 (P=0.0075).

Movement Duration Amplitude
Flexion Extension Flexion Extension

PG R2 0.42 0.34 0.10 0.23
Electrode G37 G30 G23 G9
Slope 0.92 0.61 -0.0094 -0.012
Pγ Value 0.74 0.74 3.68 2.63

E R2 0.71 0.62 0.41 0.55
Electrode G37 G37 G36 G19
Slope 1.0 0.85 0.081 -0.080
Pγ Value 1.50 1.55 22.58 15.69

SFE R2 0.69 0.71 0.30 0.33
Electrode G27 G20 G29 G26
Slope 1.0 1.2 -0.085 -0.069
Pγ Value 1.63 1.62 13.99 18.26

IV. DISCUSSION

The persistence of Pγ bursts for the duration of the
movement suggests that M1 is likely active for the entire
duration of a movement instead of providing a marker for the
movement onset. For each individual flexion and extension
in the E and SFE movements, the duration of the Pγ burst
was approximately equal to the duration of the θ̇ deflection
(as evidenced by slope of ∼1). This relationship was true
for a range of velocities (see Table II), including the slow
speed movements. This raises the possibility that M1 neurons
directly activate motor units responsible for the movements.
Furthermore, the slope of the duration regression line was
slightly higher for SFE. This suggests that for larger joints,
the Pγ activity may encode for acceleration or a combination
of both velocity and acceleration, whose deflection lasts
longer than that of θ̇.

On the other hand, even though the R2 values correspond-
ing to the amplitudes of Pγ bursts and θ̇ deflections were
statistically significant (p=0.0075), the majority of variance
was unaccounted for. Only the R2 and slopes for E move-
ment supported the original hypothesis (Pγ burst amplitude
correlates with the movement deflection amplitude). The
possibility of other variables (e.g. torque, muscle activity)
being encoded by this feature may explain the remaining
variance. The inherent variability of the peak values of the
Pγ bursts may be another contributing factor.

The spatial distribution (Fig. 2) of the maximum R2 across
movement types conformed to a somatotopic arrangement in
M1, in which proximal to distal movements were represented
in a medial to lateral manner. In addition, the area of high
R2 increased for E and SFE movements, compared to PG
movements. This can be explained by the stronger Pγ bursts
(higher Pγ amplitudes, see Table II), leading to a larger
spread of movement-modulated high-γ ECoG activity by
volume conduction. This in turn allowed high R2 values to
be established over wider brain areas.

The locations of maximum R2 differed between flexion
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Fig. 1. Representative time series of the three different speeds for SFE movements. The top traces are Pγ at electrode G37, and the bottom traces are θ̇.
The Pγ signal from each electrode was standardized such that the median = 0 and the median absolute deviation (mad) = 1 during the initial 30-s idling
period (not shown). The widths (durations) of both the Pγ bursts and θ̇ deflections were determined at the 3-mad threshold (circle and square segments)
or between local minima. The amplitudes were determined by averaging over 5 points around the extremum within each segment and are indicated by
triangles.

Fig. 2. Spatial distribution of R2 values between the durations of the Pγ bursts and θ̇ deflections, and between the amplitudes of the Pγ bursts and θ̇
deflections. Note that amplitudes during PG are not shown since the R2 values are all < 0.23. Abbr.: A = Anterior, P = Posterior, M = Medial, L = Lateral,
M1 = Primary motor cortex, S1 = Primary sensory cortex, PMA = Pre-motor area, CS = Central sulcus, PCS = Pre-central sulcus.

Fig. 3. Relationship between the durations of Pγ bursts and θ̇ deflections for SFE movement. Black crosses (fast speed), red crosses (moderate speed),
green crosses (slow speed). A best-fit line is also shown for each regression model.
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Fig. 4. Relationship between the amplitudes of Pγ bursts and θ̇ deflections for E movement. Black crosses (fast speed), red crosses (moderate speed),
green crosses (slow speed). A best-fit line is also shown for each regression model.

and extension for each movement type, suggesting that
there exist separate neuronal generators responsible for each
movement direction. These generators appeared to be suffi-
ciently resolved in space using a high-density ECoG grid,
which makes it a promising signal acquisition platform for
future BCI applications. In summary, the strong R2 for
durations, the presence of their somatotopic arrangement,
and the separation of flexion and extension generators further
reinforce the possibility that M1 cortical neurons are directly
responsible for activating muscle motor units.

Finally, it can be observed that Pγ bursts did not fully
return to the noise threshold between flexion and extension
movements at fast speed (see Fig. 1). Adjusting future
experiments to increase the idling period to 2-3 s may better
isolate the ECoG signals encoding for these movements and
may improve the R2 value.

V. CONCLUSION

This study explored the characteristics of high-γ power
bursts at varying movement velocities. The results support
the hypothesis that M1 is active for the entire duration of
a movement instead of marking the onset of movement.
They also suggest that M1 may be directly responsible for
activating the individual muscle motor units. Our future work
will focus on corroborating these findings and testing this
hypothesis in a larger cohort of subjects. Ultimately, this
may improve our understanding of physiological processes
underlying upper extremity movement, which in conjunction
with high-density ECoG grids, may lead to the design of
better BCI systems for upper extremity prosthesis control.
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