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Abstract— The aim of this paper is to investigate the influence
of mental fatigue on Positive 300 (P300) and Steady State
Visual Evoked Potentials (SSVEP) during virtual wheelchair
navigation. For this purpose, experimental protocols were setup
in order to induce mental fatigue, P300 and SSVEP. Next, the
correlation between mental fatigue and P300/SSVEP parame-
ters were investigated. At the end, the best correlated features
from both modalities were used as inputs for three classification
techniques. Depending on the subject samples (healthy vs
palsy), The best overall classification rate reached 80% for
P300 modality. The results of this investigation constitute the
first steps towards an anticipatory system that can assist the
wheelchair driver during navigation, depending on his mental
fatigue level.

I. INTRODUCTION

Controlling a powered wheelchair can become a very
hard task for elderly persons or those with heavily reduced
Physical/mental abilities. Consequently, shared paradigms
were introduced to enhance navigation security as it gives
to the user more or less control on a need basis [1]. Such
a paradigm was introduced in many studies to conceive
a suitable wheelchair according to the subject pathology.
Navigation enhancement was ensured either by adding new
on board sensors [2], Global Positioning System (GPS)[3],
or by assessing the user’s performance by the mean of motor
activities such as haptic feedbacks [4], or even by introducing
new modalities[5]. Although these approaches showed very
good results, they still centered on the wheelchair system and
hold a delayed aspect; the wheelchair corrective behavior
is generated after that the user commits an error during
navigation.

In the present paper, the proposed shared control is rather
based on human factors and holds an anticipatory aspect
i.e. through human factors, the decision system triggers to
the suitable navigation mode: manual, semi-autonomous and
autonomous which reflect the subject physical ability to com-
mand his wheelchair. To the best of our knowledge, antici-
patory human factors-based wheelchair navigation projects
are not so many. In fact, experts, doctors, occupational
therapist and psychologists, suggested that human factors
have an important impact on navigation safety such as mental
fatigue and emotions. In the current study, mental fatigue
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are investigated and measured through its influence on brain
activity.

Performing a cognitively demanding task for an extended
period of time induces a state that is labeled mental fatigue
[6]. The latter is a common in everyday life and becomes
clear in compromised task performance, subjective feelings
of tiredness, and the accompanying unwillingness for further
mental effort [7]. It shows specific perturbations on its Elec-
troEncephalographie (EEG) patterns, which can influence its
role as a source of control. We investigate in this article two
common sources of control namely: P300 and SSVEP.

The use of infrequent visual, auditory or somatosensory
stimuli evokes a positive peak over the parietal cortex at
about 300 ms after the stimulus presentation. This is referred
as P300. Its response is elicited by the ”oddball” paradigm,
in which repeated stimuli are presented to the user, and there
is a specific target stimuli that rarely occurs among the more
common non-target stimuli. Each time the target stimulus is
presented to the user, the P300 response appears in the EEG
signals. A typical P300 is characterized by the following
parameters:

Maximum amplitude: the maximum magnitude of the
generated pick it varies depending on the sensor and the
region where the P300 occurred.

Minimum amplitude: the minimum magnitude reached
before that the signal stabilizes.

Latency: the time that separates the onset time of the
stimulus and the appearance of the P300. Usually, this value
is approximately 300 ms.

Period: the needed time for the EEG signal to stabilize
after reaching its P300 maximum and minimum amplitudes.

On the other hand, Steady-state Visual Evoked Potential
(SSVEP) is a brain response to visual stimulus flashing with
certain pattern. It occurs when the retina is excited by a
visual stimulus presented at frequencies ranging from 3,5
Hz to 75 Hz [12], where a continuous or oscillatory response
is generated by the brain. SSVEP-based BCI uses flashing
lights at various frequencies. Thanks to its excellent signal-
to-noise ratio and relative immunity to artifacts, SSVEP
has become one of the commonly used sources of control.
Moreover, it has the advantages of better accuracy, high
information rate and short even no training time is required
[13]. A typical SSVEP signal, can be processed by the study
of EEG spectral power over band wave frequencies : δ (up
to 4 Hz),θ (4Hz-8Hz), α (8Hz-13Hz) β (13Hz-30Hz) and γ
(30Hz-100Hz).

This paper is divided into 3 major parts; in section 1,
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we will expose the environmental setup and the procedure
adopted to induce mental fatigue, P300 and SSVEP. In
section 2, a statistical study will investigate the correlation
between P300/SSVEP parameters per sensor and the fatigue
level rated by subjects in each trial. In section 3, three
classifications techniques were used in order to compare the
viability of the two modalities.

II. MENTAL FATIGUE, P300 AND SSVEP INDUCTION

A. Materials

As the experiment targets wheelchair navigation, an In-
vacare Storm 3G Ranger X branded wheelchair is used.
Equipped with joystick, encoders were added to its wheels
so the wheelchair velocity can be digitized and treated.
Those can be useful to control a virtual world projected on
a 180 degrees panoramic screen to help the immersion of
the user in the world. EEG signals were recorded using an
Emotiv Epoc headgear with 16 sensors at a sampling rate
of 128Hz. The virtual world was programmed using reality
factory engine used generally for video games conception.
The distance between the wheelchair and the screen is 2
meters.

B. Experimental setup

The P300 virtual world consists of a hallway in which,
the user has to navigate from point A to point B placed
respectively at the start and at the end of the room. This being
said, Three parameters were modified in each navigation sce-
nario: luminosity (low, medium, high), number of obstacles
(low, medium, high) and obstacles velocity (no velocity, low,
medium, high) The combination of all cases results in 36
scenarios. the subject has to fill two missions; the first one
is to be able to navigate from the starting point A to the
goal point B by avoiding obstacles (either static or moving).
In the second part, and in order to induce P300, each time
the subject reaches the point B, a set of flickering pictures is
displayed (fruits, vegetables and objects). This constitutes the
time zero of the P300 waveform recording. Before starting
of each scenario, an informative message is displayed with
the stimulus that subject must reach to go to the next level.
The onset of the target stimulus marks the beginning of the
measurement of P300 latency parameter and the user has to
hit it in order to activate the next scenarios. The latter are
chosen randomly in a way, the learning process is inhibited as
the subject don’t have any idea about the modified parameter.
In the other hand, for SSVEP experiment, the same hallway
was used as far as the user is told navigate from point A
to point B placed respectively at the start and at the end of
the room. two parameters were modified in each navigation
scenario: number of obstacles (low, medium, high) and
obstacles velocity (no velocity, low, medium, high). The
combination of all cases results in 12 scenarios. To induce
SSVEP, flashing lights were placed on the hallway with a
flashing frequency of 10 Hz.

C. Procedure

Ten subjects (with two suffering from cerebral palsy)
took part in the experiment. they signed a consent form
that explains the experiment goals and steps. After sitting
comfortably in the wheelchair, they were given a set of in-
structions informing them of the experiment protocol and the
meaning of the different scales used for self-assessment. An
experimenter was also present there to answer any questions.
After the sensors were placed and their signals checked, the
participants performed a practice trial to familiarize them-
selves with the system. Next, the experimenter started the
physiological signals recording. For the investigation of the
correlates of the subjective ratings with the EEG signals, the
EEG data was common average referenced, down-sampled
to 128 Hz. Eyes artifacts were removed with Blind Source
Separation technique (BSS). The signal recorded from the
first five seconds of each trial was extracted as baseline. From
which amplitudes (maximum and minimum) were averaged
yielding to minimum and maximum reference amplitudes.
Those were then subtracted from the trial amplitudes, con-
ceding the change of amplitudes. For latency and period,
those are compared to the reference mentioned by literature
(300ms and 600ms). For each subject, the input measures
matrix M and fatigue matrix F are initialized as follows:

M =

 m1,1 . . . m1,56

...
. . .

...
m36,1 . . . m36,56

 (1)

F =

 f1
...
f36

 (2)

where : mi,j is the measure associated to the
trial i and variable j defined by the combination
of the parameter par ∈ {min,max, lat, per}
per sensor s ∈ {AF3, AF4, O1, O2, P7, P8

,F3, F4, T7, T8, FC5, FC6, F7, F8} resulting in 56 possible
crossings. fi is the fatigue rating given by the subject in the
ith trial. We computed the Spearman correlated coefficients
between the power changes and the subjective ratings, and
computed the p-values, (p). The Spearman coefficient is
calculated as follows:

p = 1− 6
∑
d2i

n(n2 − 1)
(3)

where : di is defined as di = xi − yi in each observation,
xi and yi are the ranks of the raw scores Xi = mi,j and
Yi = fi and n is the number of samples. This was done
for each subject individually and, assuming independence,
the 10 resulting p-values per sensor and power were then
combined to one p-value via Fishers method:

χ2 = −2
k∑

i=1

loge(pi) (4)
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where : pi is the p-value associated to the subject i. While
k = 10 is the total number of subjects in this experiment.

For SSVEP experiment, the same procedure is applied
with the introduction of flashing lights and modification of
obstacles and luminosity parameters. For correlation study,
brainwave signals amplitudes per sensor were used as fea-
tures which results in 70 possible crossings.

III. CORRELATION BETWEEN P300/SSVEP
PARAMETERS AND SUBJECTIVE RATINGS

Before proceeding to the results presentation, the subjects
were gathered in two samples: the healthy sample which
involves all healthy subjects, the pathological sample which
contains our two palsy ones. from now on, the reported
results of the applied techniques will present the average of
each sample individually and the overall classification rate
for the combined samples as we report the combined F-score
(in percentage), based on the precision and recall measures.
For P300, The results are summarized in Table I and Fig. 1
show the (average) correlations with significantly (p < .05)
correlating electrodes highlighted.

TABLE I
THE ELECTRODES FOR WHICH THE CORRELATIONS WITH THE SCALE

WERE SIGNIFICANT (p < .05) FOR EACH CONSIDERED PARAMETER

Parameters
Maximum Minimum Latency Period

F3 0,03811*
O1 0,01596** F4 0,01922**
O2 0,04556* - - FC6 0,03136*
T8 0,01214** O1 0,01717**

O2 0,021558*

Fig. 1. Mean correlations over subjects between fatigue ratings and P300
components

For minimum and latency, no correlation was found be-
tween them and the subjective ratings (p > .05). This is
due to the fact that the minimum is considered as response
phenomena so that the signal could reach its normal state and
it’s not related to fatigue as well as for latency, this could
be justified by the fact that latency depends on the presented
stimulus which was the same in all experiments. This was
also reported in many studies (see for example [14]). While
other studies [15] have stated that the latency depends on
the complexity of the visual stimulus presentation, this is
not the case for our experiment where the same picture
was used. For maximum, it can be noticed that the latter
occurs especially in the occipital region, thus over visual
cortices. The latter showed the strongest correlations (p =

.01). This is due to the fact that the presented stimuli are
of visual nature. Notice also that maximum amplitude of
temporal sensor T8 correlates with subjective ratings which
can be explained by the fact that temporal lobe interprets the
meaning of visual stimuli and establish object recognition.
In fact, the ventral part of the temporal cortices appears to be
involved in high-level visual processing of complex stimuli
such as faces and scenes. Anterior parts of this ventral stream
for visual processing are involved in object perception and
recognition[17]. In the other hand, for SSVEP, the results
are reported in table II and Figure 2 show the (average)
correlations with significantly (p < .05) with correlating
electrodes highlighted.

TABLE II
THE ELECTRODES FOR WHICH THE CORRELATIONS WITH THE SCALE

WERE SIGNIFICANT (p < .05) FOR EACH CONSIDERED PARAMETER

Parameters
δ θ α β γ

O1 0,01755**
- - O2 0,01832** O1 0,0335* -

P7 0,0354* O2 0,045*
P8 0,032*

Fig. 2. Mean correlations over subjects between fatigue ratings and SSVEP
components

For the band waves δ, θ and γ, no correlation was found
between them and the subjective ratings (p > .05). This
can be explained by the fact that the frequency of the
flashing lights is 10Hz; as a result, response frequency is
more prominent in the bands close to the stimulus frequency
of presentation or to its harmonics which is not the case
for the mentioned band waves. For α and β, it can be
noticed that the latter occur especially in the occipital region,
thus over visual cortices. The latter showed the strongest
correlations (p = .01). This could be explained by the
fact that the presented stimuli are of visual nature. Also, as
the presentation frequency was fixed to 10Hz, the principal
response frequency and its second harmonic are localized
in the frequency bands ranging from 8Hz to 29Hz which
encloses the α and β waves. This also explains the fact that α
waves show the strongest correlations especially for O1 and
O2. It could be noticed also that parietal lobe of the brain (P7

and P8) show a good correlation with fatigue; The parietal
lobe plays important roles in integrating sensory information
from various parts of the body, knowledge of numbers and
their relations and in the manipulation of objects. Its function
also includes visuospatial processing.
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IV. CLASSIFICATION
The best correlated features were used as inputs for

three classification techniques : Linear Discriminant Analysis
(LDA), Multi Layer Perceptron (MLP) and Support Vector
Machine (SVM). The results for healthy and palsy subjects
are summarized in the following tables:

TABLE III
CLASSIFICATION RATE FOR P300 MODALITY

Technique Classification rate
Healthy Pathological All

SVM 80% 74% 77%
LDA 82% 76% 79%
MLP 83% 77% 80%

TABLE IV
CLASSIFICATION RATE FOR SSVEP MODALITY

Technique Classification rate
Healthy Pathological All

SVM 85% 65% 75%
LDA 88% 68% 76%
MLP 86% 64% 75%

For P300, the results show that MLP has the best clas-
sification rate with 80%. LDA (79%) presents, generally,
good results as well as MLP. SVM obtained lower than MLP
and LDA but the difference is neglected. In this case, two
observations can be given; The number of palsy subjects is
relatively low (only 2), thus there is no noticeable differences
in classification rates as they are relatively low. The overall
number of subjects is ten, the classification rate can be
acceptable as it could be more enhanced by adding more
subjects, thus enlarging the database, and providing more
learning time. One of the subjects was excluded from this
study due to his familiarity with video games; in fact, he
was able to finish all the scenarios without being affected
with fatigue which led to a very low rating scale over
all experiments while for the others, the average ratings
were relatively balanced. While for SSVEP, the results show
that LDA has the best classification rate with 76%. MLP
presents, generally, good results as well as SVM (75%).
SVM and MLP were lower than LDA but the difference is
not very big. The classification rate is not good enough due
to many explanations; the number of subjects isn’t many
as it could form a good database which is also the case
for the number of trials. Despite that, the classification rate
could be acceptable for such conditions and may give better
results if the experiment involved many subjects and many
trials. There is a big difference in classification rate between
healthy and pathological samples ; the latter present a very
bad performance as only two subjects are not sufficient to
train the used techniques as well as the number of trials per
subject in case of SSVEP (12 trials) is lower than those of
P300 (36 trials).

V. CONCLUSION AND PERSPECTIVES
The lack of sufficient number of palsy subjects makes it

very difficult to confirm whether EEG could be reliable or

not although for healthy users the results are encouraging and
could be enhanced by enlarging recordings database. This
being said, EEG must be compared with other physiological
sensors such as Electromyography (EMG), Electrocardiogra-
phy (ECG) and skin temperature; a pilot study could reveal if
EEG could be integrated in a fatigue detection bloc solely, or
does it require to be coupled with other sensors. Moreover,
P300 and SSVEP were studied individually. The combination
between them could offer more interesting results by using
fusion techniques such as possibilistic or evidential theories.
The combination of mental fatigue with other human factors
such as emotions could be very affordable and contribute to
the enhancement of wheelchair navigation.
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