
Subject-oriented training for motor imagery brain-computer interfaces*

Serafeim Perdikis1 and Robet Leeb1 and José del R. Millán1

Abstract— Successful operation of motor imagery (MI)-based
brain-computer interfaces (BCI) requires mutual adaptation
between the human subject and the BCI. Traditional training
methods, as well as more recent ones based on co-adaptation,
have mainly focused on the machine-learning aspects of BCI
training. This work presents a novel co-adaptive training
protocol shifting the focus on subject-related performances and
the optimal accommodation of the interactions between the two
learning agents of the BCI loop. Preliminary results with 8 able-
bodied individuals demonstrate that the proposed method has
been able to bring 3 naive users into control of a MI BCI
within a few runs and to improve the BCI performances of 3
experienced BCI users by an average of 0.36 bits/sec.

I. INTRODUCTION

Motor imagery (MI)-based brain-computer interface (BCI)
systems have been established as a promising solution for
restoring communication and control abilities of disabled
people [12]. Successful, self-paced control of brain-actuated
devices prerequisites a mutual learning process between the
BCI and the human subject [7], [9]. In the conventional,
mutual learning approach, the BCI modules are first trained
to optimally decode a subject’s mental intentions (machine
learning calibration [4]). Subsequently, the subject learns to
optimally modulate his/her brain activity through feedback
training (subject learning, [1], [7]). Recent efforts have
focused on co-adaptive methods, considerably minimizing
the required training time (e.g., [11]).

Both conventional and co-adaptive mutual learning meth-
ods are characterized by the failure to bring a non-negligible
percentage of prospective users into control of an MI BCI [2],
[5], [11]. Additionally, both approaches have, so far, only
explicitly targeted the machine-related challenges of mutual
learning and mainly those concerning classifier adaptation.
Hence, there is still considerable room for refinement of
training protocols, by shifting the focus from the adaptation
of the BCI modules to that of subject-related factors [8], as
well as to the optimal control of the two parallel learning
processes in BCI training [3].

This work proposes a novel training protocol, introducing
interventions on multiple levels of the state-of-the-art train-
ing paradigms along these lines. Our preliminary results,
acquired in online experiments with 8 able-bodied users,
demonstrate the effectiveness of the proposed approach in
bringing very quickly naive users into control of an MI BCI
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as well as in improving the performances of experienced MI
BCI subjects.

II. NOVEL FEATURES AND MOTIVATIONS

The main goal of the implemented training method is
to promote modulable EEG brain patterns, in other words,
strong ERD/ERS [10] activations during MI that can be
easily distinguishable from the “’resting” state. This is
achieved by explicit modeling of the Intentional Non-Control
(INC, “rest”) feature distributions and by the requirement of
producing MI feature values at the tails of these distributions
through appropriate thresholding in order to identify optimal
features and get positive feedback rewards. On top of that,
the separability of brain patterns is naturally enhanced by
enforcing non-overlapping modulable feature sets for two
distinct MI tasks through an online feature selection scheme.
Increased modulability and separability are thus expected to
improve both Intentional Control (IC) performances (accu-
racy, rejection) and INC performances (false positive rate).

A second series of interventions regards the coupling of
(i) an instructed exploration of mental tasks and strategies [6]
in immediate online feedback training and subsequent ex-
ploitation of those strategies shown to be optimal, with
(ii) the aforementioned online feature selection, to capture
the inevitable changes of brain patterns. Hence, the auto-
matic, online task selection and machine calibration can
be hoped to reduce the overall training time compared
to conventional training. Optimal accommodation of the
machine- and subject-learning processes is also attempted
through explicit treatment of the plasticity/stability dilemma:
feature selection is performed both in short-term, as long
as no stable features exist, thus immediately rewarding a
favourable MI strategy with minimum delay before it is
abandoned, and solely in long-term, as soon as stable features
have been identified, in order to promote stability.

Last but not least, the protocol follows a game-like design
(pacman), targeting increased engagement by the user, as
well as an incremental learning approach towards progressive
and adaptive training [8].

III. METHODS

A. Experimental apparatus and participants

During the experiment, subjects are comfortably seated
about 1 m away from a monitor displaying the protocol’s
graphical user interface (GUI). 16 active Electroencephalog-
raphy (EEG) channels over the sensorimotor cortex are
recorded (Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz,
C2, C4, CP3, CP1, CPz, CP2, CP4, reference on earlobe)
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with a gUSBamp system (gTec medical engineering GmbH,
Schiedlberg, Austria) at 512 Hz.

The experiment takes place in 1-2 BCI sessions lasting
approximately one hour and consists of 3 stages of increasing
difficulty (incremental learning): At Stage-1, the subject
learns a 1-class BCI (30 trials/run), exploring optimal mental
strategies to drive pacman right. Once stable features are
found, the subject proceeds with Stage-2, where 30 class-2
trials/run are executed with exploratory efforts on a second
MI task. As soon as a second, stable (and discriminant from
the first class, thus the increased difficulty) brain pattern
has been found, the subject can proceed with Stage-3 runs,
where 10 INC trials are added, along with 15 trials/IC class.
The protocol terminates with three Stage-3 runs (even if the
stability criteria are not met).

Eight able-bodied users have participated in the study (7
male and 1 female, 27.4±5.7 of age), among which 4 expert
users (S1-S4), three naive users (S6-S8) and one user (S5)
who failed with the conventional training approach described
in [7]. The color coding for the subject categories is the same
used subsequently in the presented figures.

B. Protocol GUI and trial structure

The training protocol is a 2-class BCI version of pacman
(game-like design). Fig. 1 illustrates the protocol’s GUI and
trial structure. A trial starts with a fixation cross (5 sec),
followed by a cue (2 sec, right/left arrow for IC MI class-
1/2, respectively, and a yellow circle for INC trials). 5
positive rewards (cherries/strawberries for class-1/2 on the
respective side of the feedback bar) or 10 negative rewards
(“fires”, on either side) are then arranged and the user either
employs some MI task to collect them (IC) or “idles” to
avoid negative rewards (INC). The trial ends either when all
available rewards have been collected (minimum 2.5 sec), or
when a trial time-out of 15 sec occurs. A 3-5 sec countdown
marks the inter-trial interval.

(a) Fixation cross (b) Cue right (c) Cue left

(d) Cue INC (e) Feedback right (f) Feedback left

(g) Feedback INC (h) Pause/Calibration
countdown

(i) Run end

Fig. 1. Pacman training protocol GUI and trial structure.

C. Preprocessing, feature extraction and online feature se-
lection

Signal pre-processing involves band-pass filtering (0.1-
100 Hz) and cross-neighbour Laplacian spatial filtering. Fea-
ture extraction is implemented at a rate of 2 Hz (1 sec-long
windows with 50% overlapping), where the Power Spectral
Density (PSD) is extracted for all 16 Laplacian channels
between 8 and 30 Hz with a resolution of 2 Hz (12 frequency
bands in total).

The online feature selection scheme is based on modeling
the ERD/ERS phenomena as absolute normalized deviations
ri

t (z-score of the i-th feature at time t) of individual feature
values xi

t from the individual feature distributions f i
k during

INC (“rest”): ri
t = |xi

t − µ i
k|/si

k; the latter is represented by
univariate normal distributions f i

k ∼N (µ i
k,σ

i
k),σ

i
k = (s2)i

k,
where the mean µ i

k and standard deviation si
k of each feature

are estimated on the latest 2 min of data, extracted during an
initial 60 sec calibration (eyes-open) and updated with the
fixation period of each trial.

The fitness of each individual feature is evaluated based
on the frequency of ERD/ERS activations measured within
a certain amount of recent past. These frequencies are
calculated separately for the first (right) and second (left)
class, in two different timescales; short-term (last 7.5 sec)
and long-term (last 2 min). Four 192-dimensional feature
maps Vj

l , where l ={short,long} and j ={left,right} are
kept in memory and updated with each incoming sample of
the respective class (thus implementing a supervised feature
selection adaptation scheme). The value [V j

l ]
i
t for feature i at

time t is calculated as the frequency of ri
t threshold crossings,

where the “activation” threshold is fixed to 1.5.
Based on the current maps [V j

l ]
i
t a final feature selection for

both classes is derived with a rule-based approach. Starting
with the first class maps, in case any of the values of the
long-term map exceeds an activation frequency threshold of
t long
a = 0.4, feature selection for this class is performed based

only on this (long-term and thus “stable”) map, selecting up
to 3 features. In case no “stable” feature emerges, selection
is performed on the short-term map with a higher activation
frequency requirement of tshort

a = 0.6. The selection proce-
dure proceeds identically for the second class, with the extra
requirement of rejecting any features which demonstrate ac-
tivation frequency over tb = 0.2 for the first class. Therefore,
the online feature selection framework provides a minimum
of 0 (pacman stays still) and a maximum of 6 features.

D. Classification

The classification framework is based on a multiple-
detection scheme quantified through Mahalanobis Distance
(MD) and founded on the preceding feature selection. MD-
based activations At

j are computed separately for each class
j at time t based on the 1-3 features currently selected for
each class. Pacman moves one step right when At

right ≥ 1.5
and At

le f t ≤ 1.3, and left when the reverse holds. Otherwise,
or when no feature is selected for any of the two classes,
pacman stays still at time t (rejected sample).

1260



IV. RESULTS

The protocol evaluation is based on comparisons of the
hereby derived performances to high/low baselines achieved
with the conventional protocol described in [7], in a large
study involving 37 able-bodied and 21 end-users. For each
examined metric, the associated values in all runs by all
subjects are pooled together, and a low baseline is defined as
the value corresponding to the 25%-percentile, while the high
one to the 75%-percentile. All users reached Stage-3, apart
from S7 (unstable class-2) and S5 (both classes unstable).

A. IC and INC performances

Fig. 2a shows the single-sample accuracy achieved by
all subjects on their latest three, Stage-3 runs, derived with
a Linear Discriminant Analysis (LDA) classifier, which is
trained offline in the first run and applied on the subsequent
two runs. Simulated performances are chosen for compara-
bility with the conventional training study. It is illustrated that
all trained users (S1-S4) exceed the high baseline, as well as
their own previous performances (with conventional training,
not shown) by an average of 10.5%. Most importantly, naive
users are shown to operate above the low baseline and
close to the high one, with only S5 failing this goal. This
showcases that naive users can be successfully trained within
a few runs of direct feedback training, thanks to the features
of the proposed protocol.

(a) (b) (c)
S1 S2 S3 S4 S5 S6 S7 S8 Avg

Fig. 2. IC and INC performances. (a) Accuracy without rejection. (b)
Accuracy, Rejection and False Positive Rate for rejection threshold tc = 0.6
and (c) tc = 0.7. Green horizontal lines denote the high baseline and red the
low ones for the respective metrics.

When probabilistic sample rejection is introduced (Fig. 2b-
c, see [7]), all users (except, again, S5), operate well above
the low baseline for accuracy and False Positive Rate (FPR),
and only rejection is shown to be slightly compromised.
Regarding expert users (S1-S4), for both probabilistic sam-
ple rejection thresholds (tc = 0.6/0.7) the average Infor-
mation Transfer Rate (ITR) increases from 0.19 bits/sec to
0.55 bits/sec, while the average FPR remains unaffected for
tc = 0.6 and reduces from 86.3% (conventional training) to
73% (pacman training) for tc = 0.7. These results indicate
that the learned/refined brain patterns lead to extremely
improved IC and moderately ameliorated INC control using
standard methods (binary classification, probabilistic rejec-
tion), which should be attributed to higher levels of modu-
lability and separability “tought” by the proposed method.

B. Modulability and separability

The latter claim is substantiated by Fig. 3, which
presents a combined index CI = (MI1 + MI2 + SI)/3
as the average of class-1/2 modulabilities, MI1,2,
and separability, SI, in Stage 3 runs. MI and SI

are Kullback-Leibler divergences DKL( fA|| fB) =
1
2

(
tr(Σ−1

B ΣA)+(µA−µB)
T Σ
−1
A (µA−µB)−D− ln |ΣB|

|ΣA|

)
between the multivariate normal brain pattern distributions
fA,B ∼ N (µA,B,ΣA,B) either of the two MI tasks
(separability), or MI task-1/2 and “rest” (class-1/2
modulability). The dsitributions fA,B are constructed
within each run using the 6 most separable (as evaluated
by Fisher Score) features between the implicated tasks. All
subjects, but S5, perform close or above the high baseline,
for at least one of the Stage 3 runs shown (and close to
that for the rest), demonstrating that even naive users were
able to find a good compromise between modulability and
separability, gaining control over the BCI game.

S1 S2 S3 S4 S5 S6 S7 S8 Avg
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Fig. 3. Combined modulability and separability index.

C. Online feature selection fitness

The online feature selection module is hereby designed to
have a dual role of selecting both the most modulable and
most separable features. Its success in these complementary
(but, also, antagonistic) aspects is evaluated separately below.

(a) (b)

(c) (d)
S1 S2 S3 S4 S5 S6 S7 S8 Avg S1 S2 S3 S4 S5 S6 S7 S8 Avg

S1 S2 S3 S4 S5 S6 S7 S8 Avg S1 S2 S3 S4 S5 S6 S7 S8 Avg

Fig. 4. Feature selection fitness against modulability. Selection of most
modulable features with (a) a strict criterion and (b) a tolerant criterion for
the first class. Equivalently, in (c) and (d) for the second class.

Feature selection fitness is evaluated as the average set-
overlapping index FS = |S∩B|/min(|S|, |B|)∈ [0,1], where S
the selected feature set and B the set of the 6 most modulable
or separable (see below) features, on consecutive 10-trial
chunks of data in a run, then averaged within all runs for
a given training stage. Since feature selection is computed
on two time-scales, two metrics are extracted, a “strict” and
a “tolerant” one: For the strict metric, only selected features
derived from the “stable” maps are accounted for in S, while
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for the “tolerant” metric, feature contributions from the short-
term maps are included.

Fig. 4 evaluates the ability of the proposed method to
pick the most modulable features for both classes. It is thus
shown that, for class-1 (right), all subjects but S3 and S5
are rewarded through the feature selection mechanism for
producing modulable class-1 patterns (Fig. 4a). It is easy to
see that for most subjects this index improves from Stage
1 to Stage 3 runs, reflecting that the initial exploration
of mental strategies has eventually converged to optimal,
stable strategies, which the online feature selection scheme
is able to identify. Using the tolerant index (Fig. 4b), the
situation is further improved. The comparison of these figures
provides evidence on the successful accommodation of the
stability/plasticity dilemma regarding modulability: Features
selected on the short-run (exploration) are largely sustained
on the long-run (exploitation). On the downside, feature
selection fitness regarding modulability is considerably de-
creased for the second class for all subjects but S3 and S4.
Fig. 4c-d reveal the fact that for most subjects selection of
modulable second-class features is compromised already in
the short-run, while it also fails to transfer in the long-term
selection.

Evaluating feature selection fitness with respect to sep-
arability (Fig. 5) showcases the existence of a modulabil-
ity/separability trade-off with respect to feature selection, as,
with the strict criterion, enough separable features are se-
lected for all subjects (better than the low baseline, which, for
this metric, has been almost 0), but no subject, even among
the experienced ones, manages to reach or exceed the high
baseline. The situation is improved regarding the tolerant
criterion. Yet, the fact that no big differences occur between
the two criteria for most subjects (exceptions, S5 and S6),
shows that subjects have been mostly stable in producing
certain separable features, and the feature selection module
successful enough in picking most of those.

(a) (b)

S1 S2 S3 S4 S5 S6 S7 S8 Avg S1 S2 S3 S4 S5 S6 S7 S8 Avg

Fig. 5. Feature selection fitness against separability. Selection of most
separable features with (a) a strict criterion and (b) a tolerant criterion.

V. DISCUSSION
The most important outcome of this study has been the

demonstration of the possibility to enable MI training of
naive users and further improve performances of trained
users within a few runs and avoiding offline BCI calibration
in a completely automatic manner. The proposed protocol
is shown to achieve the goals of increased separability and
modulability over conventional training for most subjects, a
fact also reflected in the improved IC and INC performances.
A decreasing trend of the combined index across runs
for most subjects could be attributed either to fatigue, or

to a need of adapting the task difficulty to the subject’s
performance. Furthermore, the feature selection scheme is
shown to balance well the trade-off of selecting features that
are both adequately modulable and separable. Additionally,
the introduction of a double-buffer adaptation approach, in
combination with the provided instructions, allows users to
discover optimal mental tasks as soon as they have been
adopted and sustain them after those are shown to be stable,
by selecting features on short- and long-term scales, as
needed. The latter, as well as the fact the both subject- and
machine-related metrics are shown to simultaneously im-
prove, justify an optimal accommodation of the interactions
between the two learning agents.

The main limitations are, first, the fact that the only user
who failed to achieve good performance with conventional
training has failed to improve with respect to the subject-
related or high-level factors also with the proposed method,
and, second, that the difficulty in producing a second highly
modulable MI pattern does not seem to be alleviated. Yet,
these effects could be also attributed to the short training
period applied. Future work entails testing with more BCI
sessions and a large numbers of users failing with traditional
training approaches, as well as algorithmic modifications to
automatically adjust the task difficulty within a run so as to
further exploit the incremental learning concept.
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