
  

 

Abstract- In Wireless Body Area Networks (WBAN) the 

energy consumption is dominated by sensing and 

communication. Previous Compressed Sensing (CS) based 

solutions to EEG tele-monitoring over WBAN's could only 

reduce the communication cost. In this work, we propose a 

matrix completion based formulation that can also reduce the 

energy consumption for sensing. We test our method with state-

of-the-art CS based techniques and find that the reconstruction 

accuracy from our method is significantly better and that too at 

considerably less energy consumption. Our method is also tested 

for post-reconstruction signal classification where it 

outperforms previous CS based techniques. At the heart of the 

system is an Analog to Information Converter (AIC) 

implemented in 65nm CMOS technology. The pseudorandom 

clock generator enables random under-sampling and 

subsequent conversion by the 12-bit Successive Approximation 

Register Analog to Digital Converter (SAR ADC). AIC achieves 

a sample rate of 0.5 KS/s, an ENOB 9.54 bits, and consumes 108 

nW from 1 V power supply.  

 

Index Terms— EEG, WBAN, Compressed Sensing, 

Analog-to-Information Converter, SAR ADC 

I. INTRODUCTION 

EEG signals are useful for monitoring brain activities for 
medical (seizure detection) and cognitive tasks (emotion 
recognition, Brain Computer Interface). In recent times there 
is a growing interest in tele-monitoring of EEG signals using 
Wireless Body Area Network (WBAN). The main challenge 
in a WBAN is to conserve energy; energy is consumed by 
three tasks - sensing, processing and communication. The 
communication cost is the highest; the sensing cost is also 
significant for our problem; the processing cost is negligible 
compared to the other two tasks.  

As communication is the most power hungry operation, 
the primary target till now has been to reduce it by some 
form of signal compression. However, traditional transform 
coding techniques are too computing intensive for a simple 
sensor node and have been precluded at the onset. One easy 
way to compress the signal is to project it to a lower 
dimensional matrix by using a random matrix. It has been 
shown in recent studies [1, 2] that a binary random ensemble 
(of 1's and 0's) is effective for this task, since storing and 
operating on such a sparse matrix is efficient.  

Recovering the EEG signal from its lower-dimensional 
projection is a challenge. Non-linear recovery algorithms 
based on Compressed Sensing (CS) need to be employed. 
Since, the signal recovery takes place at the base station, this 
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is not a challenge as computing power (at the base) is not at a 
premium.  

Previous works could reduce the communication energy 
in a computationally efficient manner, but could not reduce 
the sensing energy. The only way to reduce sensing energy is 
by under-sampling the EEG signal. Periodic under-sampling 
is not an option for obvious reasons. Even with random 
under-sampling, CS based techniques are unable to recover 
the signal. CS requires the sampling operator (in this case the 
Dirac basis) to be maximally incoherent with the sparsifying 
basis (Wavelet or Gabor for EEG). Unfortunately this 
condition is not satisfied, i.e. wavelet and Gabor basis is not 
very incoherent from the Dirac sampling basis. Thus CS 
based techniques fail. This is the main reason, why past 
researchers were unable to reduce the sensing energy. 

For the first time in this work, we propose a technique for 
reducing the sensing cost in EEG signal acquisition. There 
are two associated problems: 

1. What should be the signal reconstruction algorithm? 

2. How to design an efficient Analog-to-Information 

Converter (AIC) for the said scenario?  

The detailed answer to both these problems are discussed 
later, but here is the brief answer to the first problem. EEG 
signals are always acquired via multiple channels. The 
signals from all the channels are correlated. These correlated 
signals can be stacked as columns of a matrix; the thus 
formed matrix is low-rank since the columns are not 
independent. Since each of the signals are randomly under-
sampled, the full matrix is not available - therefore the 
problem is to recover this low-rank matrix from its under-
sampled entries. This is a classical low-rank matrix 
completion problem [3]. 

An elaborate discussion on our proposed signal 
reconstruction is given in the following section. Owing to 
limitations of space we are unable to discuss prior studies in 
CS based EEG signal reconstruction in section II. The design 
of the data acquisition hardware is described in section III. 
We discuss the experimental results in section IV. Finally the 
conclusions of this work are discussed in section V. 

II. EEG SIGNAL RECONSTRUCTION 

As we mentioned before, the only way to reduce 
acquisition energy is by under-sampling the EEG signals. 
This operation can be expressed as: 

         ixRy iii  ,        (1) 

where i, denotes the i
th

 channel, xi is the EEG signal (to be 
reconstructed), yi is the under-sampled measurement, Ri is 
the binary sampling mask ( denotes bit-wise multiplication) 

and η is the noise assumed to be Normally distributed. 
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The EEG signal ensemble from all the channels can be 
arranged in the following form: 

           XRY          (2) 

where Y, X and R are the Casorati matrices formed by 
stacking the yi's, xi's and Ri's as columns.  

The problem is to recover X from the acquired Y and 
knowledge of R. This is an under-determined inverse 
problem with infinitely many solutions. To find a reasonable 
solution, we need to have prior knowledge regarding X. In 
this case, we model X to be a low-rank matrix. This is true, 
since the EEG signals from different channels are correlated 
with each other; therefore the columns of X are not linearly 
independent. In order to corroborate our claim, we show the 
decay of singular values of a multi-channel EEG ensemble in 
Fig. 1. The singular values decay fast, implying that the 
signal ensemble is approximately low-rank. 

In low-rank matrix completion [3], one ideally needs to 
minimize the rank of the matrix. However, rank 
minimization is an NP hard problem. Theoretical studies [3, 
4] have shown that, relaxing the NP hard rank minimization 
problem to its closest convex surrogate - Nuclear Norm, still 
guarantees a low-rank solution. Following these studies, we 
propose to recover X via: 

      
*

2
min XXRY

FX

         (3) 

Here 'F' denotes the Frobenius' norm and '*' denotes the 
Nuclear Norm which is defined as the sum of singular 
values. 

There are several algorithms to solve the low-rank matrix 
recovery problem, e.g. Singular Value Thresholding (SVT) 
[5] and Fixed Point Continuation (FPC) [6]. However, by far 
the best algorithm in terms of speed and accuracy is the Split 
Bregman based Singular Value Shrinkage (SVS) [7]. 

III. HARDWARE DESIGN FOR ANALOG-TO-

INFORMATION CONVERTER 

The architecture of AIC based acquisition is shown in 
Fig. 2(b). The AIC repeatedly takes M random samples of 
the input signal which are digitized with a low power 

ADC. The input signal is then reconstructed using 
Kronecker Compressed Sensing (KCS). We effectively 
replace the Nyquist sampling SAR ADC with SAR ADC and 
pseudorandom clock generator to provide random under-
sampling of the input signal [8]. This reduces the power 
consumption of the signal acquisition process and relaxes 
the requirements of the ADC [9]. We also no longer need to 
compress the data from the ADC since it will be directly 
compressed by the AIC at a rate of N/M compared to 
Nyquist. The pseudorandom clock signal is generated by 
Linear Feedback Shift Register (LFSR). If the pseudorandom 
sequence is generated completely randomly, then the 
maximum sample rate of the ADC must be equal to at least 
the Nyquist rate. We can relax the ADC requirements by 
restricting the minimum sample spacing. This allows the full 
benefits of the compressed sensing architecture, mainly a 
reduction in sample rate or an increased instantaneous 
bandwidth, to be realized even when the additional 
pseudorandom clock generator is taken into account. The 
pseudorandom clock sequence used to randomly sample 
the input signal will have a large effect on both the 
reconstruction performance as well as the overall efficiency 
of the AIC when implemented in hardware. Medical 
monitoring is an emerging application area that exemplifies 
the stringent energy constraints imposed on wireless sensor 
nodes and their corresponding circuits.  

The power consumption (Psys) of the system is given by, 

)( RJFPPP sADCAmpsys  

where Psys is the power consumption of system from Fig. 
2(a), PAmp is the power consumption of instrumentation 
amplifier, PADC is the power consumption of ADC, Fs is the 
ADC sampling frequency, R the number of bits per sample 
and J the net transmission power per bit such that JFsR gives 
the transmitter power consumption [10].  

Compressed sensing AIC based system power 
consumption is now modified to,  

       RJF
N

M
PPP sAICAmpcssys _

       

(5) 

Here the instrumentation amplifier consumption is 
unchanged, but one extra term representing the extra 
hardware required is also present: a pseudorandom clock 
generator (PN) is used to generate random clock sequence. 
In addition to this block, the power required to transmit the 

 
 

Fig. 1 Decay of singular values for multi-channel signal ensemble. 
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Fig. 2(a) EEG acquisition system. 

 

      ADC           
       

          TXAMP

AIC

 

Fig. 2(b) Compressed sensing AIC based EEG acquisition system. 
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number of data bits (JFsR in (4)) has been reduced by a 
factor of M/N. 

A. Successive Approximation Register Analog to Digital 

Converter          

Compressed sensing AIC consists of an SAR ADC with 
random sampling operation. Its low energy consumption 
scales linearly with the samples allowed the power efficiency 
of the AIC to be maximized by taking advantage of variable 
time between samples. To meet the requirements, we 
designed 12-bit SAR ADC as shown in Fig. 3. Compared to 
conventional Digital-to-Analog Converter (DAC) 
architecture, a charge redistribution DAC array internally 
performs the sample and hold operation. Therefore, the 
sample and hold block is not needed in this implementation 
[11]. Typically the analog building blocks like DAC and 
comparator consume more than 60% of the total SAR ADC 
power. In order to reduce the power consumed by the DAC, 
we have employed smaller size capacitors. To reduce the 
power consumption further, a dynamic latch type comparator 
is incorporated in the design [12]. SAR control logic 
containing a sequencer and a shift register [13]. It performs 
a binary search on the output value of comparator. The 
conversion process begins by sampling the input and at the 
end of one conversion period the output voltage of charge 
redistribution DAC is given by  
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IV. EXPERIMENTAL AND SIMULATION 

EVALUATION 

A. Results of Analog to Information Converter 

The structure is designed and simulated using 65nm 

CMOS technology. The performance of the AIC measured at 

1V supply, 0.5 KS/s. The SAR ADC is designed in single 

ended DAC architecture. The applied input ac signal 

frequency and amplitude (VPP) are 200 Hz and 500 mV 

respectively. Timing response of the ADC is depicted in 

Fig. 4. 

 

The output spectrum for a full-scale 179.6875 Hz 
sinusoidal input, at a supply voltage of 1 V and sample rate 
of 0.5 KS/s, is shown in Fig. 5. The signal-to-noise and 
distortion ratio (SNDR), spurious free dynamic range 
(SFDR), effective number of bits (ENOB) are 59.19 dB, 
66.32 dB, and 9.54 bits, respectively. The performance 
results of the AIC are summarized in Table I. 

TABLE I.  AIC PERFORMANCE SUMMARY 

Parameter Value 

Technology 65nm CMOS 

Supply Voltage 1 V 

Resolution 12 bits 

Sample rate 0.5 KS/s 

Power Consumption 108 nW 

SFDR 66.32 dB 

SNDR 59.19 dB 

SNR 60.12 dB 

ENOB 9.54 

B. Evaluation of Reconstruction Algorithm 

There is no actual benchmark to compare our proposed 
method. Previous Compressed Sensing based methods are 
incapable of operating in the sensing paradigm where the 
EEG signal samples are partially sampled. However in order 
to test our method, we compare it against two state-of-the-art 
CS based recovery schemes - sparse recovery [1] and BSBL 
recovery [2].  

The experiments are carried out on the BCI Competition 
III dataset 1 [14]. We tested the recovery results for two 
different sub-sampling ratios - 50% (2:1) and 25% (4:1). The 
metric used for evaluation is the Normalized Mean Squared 

Error defined as 2

2

original reconstructed
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Fig. 3 Block diagram of Analog-to-Information Converter. 

 

 

Fig. 4 Transient response of ADC. 

 

 
 

Fig. 5 AIC output spectrum. 

 

1276



  

reconstruction results are shown in Table II. For each signal 
ensemble and for each configuration, the random sampling 
matrix has been simulated 100 times. The mean and standard 
deviations (of NMSE's) for all the EEG signals in the dataset 
are reported. 

TABLE II.  COMPARATIVE RECONSTRUCTION RESULTS (NMSE) ON 

BCI COMPETITION III DATASET 1 

Method Compression Ratio 

2:1 (mean, std) 4:1 (mean, std) 

BSBL [2] 0.212, ±0.120 0.368, ±0.188 

Sparse 

Reconstruction [1] 

0.380, ±0.154 0.518, ±0.196 

Proposed 

Reconstruction 

0.066, ±0.028 0.102, ±0.080 

 
Our proposed method yields significantly better 

reconstruction results than the previously known CS 
techniques [1, 2] for both under-sampling ratios.  

NMSE is a well accepted measure for comparing 
reconstruction accuracy in CS recovery problems. However, 
signal reconstruction is not the end of the story. In most 
cases, the recovered EEG signals are analyzed by human 
experts or via some automated process. It is not feasible to 
obtain feedback from human experts on a large number of 
EEG signals; thus in this work we carry out an automated 
classification task on the BCI competition III Dataset 1 in 
order to see how the reconstruction has affected the 
performance. We carry out the classification on the original 
and the reconstructed signals using algorithm [15] - this is 
one of the competing algorithms for BCI competition. The 
classification results are given in the following Table. 

TABLE III.  CLASSIFICATION ACCURACY IN % 

Method Classification Accuracy 

Compression 2:1  Compression 4:1 

Original 81% (No Compression) 

BSBL 

Reconstruction [14] 

73% 52% 

Sparse 

Reconstruction [7] 

70% 50% 

Proposed 

Reconstruction 

80% 60% 

 
We find that our proposed method yields better 

classification accuracy than the previous CS based 
techniques. It is only marginally worse than the original data. 

V. CONCLUSION 

Current CS based techniques in energy efficient 

transmission of EEG signals on WBAN's can only reduce the 

communication costs. For the first time in this work we 

propose to reduce the sensing and processing energy costs as 

well. We achieve this by sub-sampling the EEG signals in 

the time domain and recovering the multi-channel signal 

ensemble using low-rank matrix completion techniques. We 

compare our proposal with previous CS based techniques. 

Our method yields better recovery results. Quantitative 

evaluation shows that the reconstruction is almost 

indistinguishable from the fully sampled signal. Analog-to-

Information Converter implemented in 65nm CMOS 

technology and achieves a sample rate of 0.5 KS/s, an ENOB 

9.54 bits, and consumes 108 nW from 1 V power supply. 
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