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Abstract— Neuroinformatics has recently emerged as a 

powerful field for the statistical analysis of neural data. This 

study uses machine learning techniques to analyze neural 

spiking activities within a population of neurons with the aim of 

finding spiking patterns associated with different stages of 

movement. Neural data was recorded during many 

experimental trials of a cat performing a skilled reach and 

withdrawal task. Using Weka and the LibSVM classifier, 

movement stages of the skilled task were identified with a high 

degree of certainty achieving an area-under-curve (AUC) of the 

Receiver Operating Characteristic of between 0.900 and 0.997 

for the combined data set. Through feature selection, the 

identification of significant neurons has been made easier. 

Given this encouraging classification performance, the 

extension to automatic classification and updating of control 

models for use with neural prostheses will enable regular 

adjustments capable of compensating for neural changes. 

I. INTRODUCTION 

A Brain-Controlled Interface (BCI) is a device that 
captures brain transmissions involved in a subject’s intention 
to act, with the potential to restore communication and 
movement to those who are immobilized [1]. Neural signals 
can be used as an input to the BCI, but need to be decoded, to 
reveal the subject's intent before use 

To determine which neural decoding methods have been 
applied to neural signal recordings, a review of literature was 
completed which indicated that statistical analysis methods 
have existed for more than 50 years. Many of these studies 
either analyzed single neuron spiking or interactions between 
pairs of neurons. However, advanced, population-based 
approaches to studying neural interactions have been 
developed more recently [2].  

Patterns abound in nature and neural spiking is no 
exception. In the motor system, it has been reported that 
common, task-related, spatiotemporal spiking patterns only 
occur at chance levels between trials [3], however, other 
studies prior to this reported that specific spiking patterns do 
exist and may have a role in information processing in the 
brain [4]. A number of studies looked at patterns at the 
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neuron level, either within individual neuron spiking or 
between pairs of neurons. However, spatiotemporal spiking 
patterns may also occur at the population level, making it 
possible to identify neurons, or groups of neurons, that 
encode the salient information to produce a voluntary 
movement. 

Machine learning is a developing field with many diverse 
applications. In the field of BCI research, machine learning 
techniques have only recently been realized as a potentially 
valuable set of tools. Due to the widespread use of EEG 
signals in BCI studies, machine learning techniques have 
been predominantly used and developed for EEG 
applications. The use of machine learning with cortical 
neuronal recordings, and its application to BCI is an ongoing 
area of research. 

This study seeks to investigate the value of machine 
learning algorithms for classification of movement stages 
based on neural signals from the motor cortex. The specific 
objectives for this study were: 

 Determine a suitable classifier that maximises 
classification performance, 

 Determine the data format that provides the best 
classification performance, and 

 Determine the subset of neural units that maximises 
classification performance while minimising the 
number of features required. 

II. METHODOLOGY 

A. Previous Experimental Trials 

The data for this project was sourced from experimental 
trials as described below ([5] and [6] have further detail). 

Adult cats were trained to perform reaching and 
withdrawal movements using either forelimb to retrieve food 
pellets. The animals were trained in task performance for 
several months prior to the implantation of the microwires, 
until the ratio of successful to unsuccessful trials plateaued 
for at least one month. Once this level stabilized, microwires 
were implanted into the cortex in forelimb or hindlimb 
representations of MI (identified by intracortical 
microstimulation, ICMS). Neural activity was recorded from 
up to 24 microwires simultaneously on a computer using MC 
card and MC rack software with a filtering frequency band of 
200 Hz–10 kHz.  

Activity in each channel was digitized at 25 kHz, and raw 
digitized data recorded continuously for about 5–10 min. 
Recording was stopped after a large number of task trials and 
several minutes quiet sitting. The preamplifiers were then 
reattached to a different combination of recording sites and a 
new recording started. 
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An analogue trigger was concurrently recorded with the 
neural data and was used to separate periods of neural 
activity occurring during task performance from periods of 
continuous raw data acquisition. Analogue trigger signals 
were used to isolate a 3-second epoch of neural data: starting 
1.5 second before and finishing 1.5 second after each trigger 
signal. Video analysis was used to identify five different 
stages of task performance within these 3-second epochs; 
“background”, “premovement”, “reaching”, “withdraw”, and 
“feed”. After a set of task trials, spike activity was also 
recorded a 3-5 minute quiet period (control period): where no 
food was expected or given. 

The background stage (ave. length 811 ms/range 700-900 
ms) was the period before a food pellet was offered in the 
task. The premovement stage (307 ms/300-315 ms) occurred 
between the time the food was offered and the beginning of 
reach. The reach stage (592 ms/500-600 ms) began when the 
reaching paw moved up and ended when this paw was placed 
over the food pellet. The withdrawal stage (567 ms/500-600 
ms) began by retraction of the reaching forelimb with the 
food pellet and ended when the paw was lifted off the pellet 
in preparation to feed. In the feeding stage (721 ms/700-800 
ms), the reaching forepaw was taken off the food pellet and 
the head bent forward to pick up the pellet. Chewing and 
swallowing occurred outside the 3-second analysis period. 

The recorded data was processed offline, firstly to isolate 
useful information from that which contained unsuitable data 
(e.g. failed trials, significant inclusion of noise). This stage 
was carried out in conjunction with the video recordings, 
which also enabled timing of each the stages to be 
determined and to distinguish trials using right and left 
forelimbs. Data collected during experimental trials was 
classed as one of three types - Control (no task being 
performed), LF (trials involving use of the left forelimb) or 
RF (trials involving the use of the right forelimb). LF trials 
were not used in this study due to insufficient trials being 
available. Through MC-Rack, time stamps of spike activity 
were determined by setting appropriate threshold levels to 
separate changes in spiking, due to task related actions, from 
background spiking activity. 

B. Feature Extraction and Sampling 

1) Feature Extraction 
Previous studies ([5]) identified neural units associated 

with movement related activity (MRA) through ICMS. Using 
the electrodes associated with MRA, a feature set was built 
upon the neural units identified at each electrode by [5]. 

2) Dataset Configurations 
Analysis of the spike timing stamp data proceeded using 

three data configurations; (a) spike time stamp data, (b) 
frequency domain data (Fast Fourier Transform) and, (c) a 
concatenation of the spike time stamp and frequency data. 
The decision to produce a combined data configuration was 
made to determine if the combination of time and frequency 
data would improve classification performance. 

3) Sampling Routine 
During exploratory runs with Weka Data Mining software 

(Weka) [7], the full size data files could not be processed in a 
reasonable time, or not at all due to computational 
limitations. To obviate these processing problems, a sampling 

routine, based on a normalized binning approach, was 
developed to reduce the number of attributes. The initial 
range of bin widths used to produce data sets were: Spike - 5, 
10, 20, 50, 100, 200, 500, 1000, 2000, 5000 and 10000, and 
FFT - 1, 2, 5, 10, 20, 50, 100, 200 and 500. The combined 
data set used combinations of these bin widths for the 
respective data type. 

C. Classifier Evaluation 

1) Preliminary Classifier Evaluation 
Weka's default configuration includes a large number of 

classifiers, a total of 43 classifiers were deemed suitable for 
use in this study. For a classifier to move to the next stage of 
evaluation, the classification accuracy had to be above 70%. 
Two data files were used to assess the classification 
performance of each classifier: Spike data with a bin width of 
50, and FFT data with a bin width of 5. Each data file 
contained only two classes: control and RF. Classification 
was performed using the default parameters (as set by Weka) 
for all classifiers. The classifier's ability to predict the class of 
an instance, was determined by 10-fold cross-validation. 

2) Stage 1 Classifier Evaluation 
Prior to this stage of evaluation, the properties for each 

classifier were investigated to determine if classification 
performance could be improved. To maximize the 
performance of each classifier, the nominal (i.e. preset 
choices) properties of each classifier within Weka were 
explored. To optimize the nominal parameters for each 
classifier a spike data set with a bin width of 100 (classes: 
Control vs. RF) was used. The options of each property were 
cycled through followed by classification with the option 
producing the best classification performance being retained. 
In this regard the process of property selection used a greedy 
selection process, hence the optimal combination of property 
options may not have been achieved. 

Evaluation of the classifiers in the subset was then 
completed using a range of data sets to identify whether any 
of the classifiers performed better than others and whether 
the bin width affected classification performance. All bin 
widths and all data sets were used during this evaluation 
stage. Each data set having the Control and RF classes. 

Classifier performance was evaluated using the area 
under the Receiver Operating Characteristic curve (AUC). To 
ensure that classification performance was repeatable, two 
classification runs were completed for each classifier on each 
data set. The second classification run had the instances 
randomly shuffled using a predetermined seed. This was 
accomplished using a pre-processing filter available in Weka. 
10-fold cross-validation was used to determine the classifier's 
ability to predict the class of an instance. 

3) Stage 2 Classifier Evaluation 
For stage two of classifier evaluation, the control class 

was discarded and the RF class was split into separate vectors 
for each of the movement stages. The length of each stage 
vector was based on stage timings from video analysis. The 
data sets contained two classes: the target class and the 
remaining stages combined into one class called 'Others'. Due 
to the variation in stage lengths, instance vectors of equal 
length were formed by first finding the length of the longest 
stage, then scaling all other stages to the longest stage. 
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Before classification, the class imbalance between the two 
classes needed was addressed. Weka's pre-processing filter, 
SpreadSubSample, achieved this by randomly selecting 
instances from the majority class until the number of 
instances in each class was equal. Classification then 
proceeded using two classification runs, 10-fold cross-
validation with classifier performance evaluated using the 
AUC value. From this evaluation stage, the classifier and bin 
width were determined for further analyses of the three data 
sets (Spike, FFT and Combined). 

D. Binary Classification 

With the classifier and bin width determined, binary 
classification of each stage against the others was performed. 
Classification proceeded as for Stage 2 Classifier Evaluation. 

E. Feature Selection 

The use of population of neurons while improving 
decoding performance, also introduces computational issues 
due to the increased amount of data that is recorded and 
decoded. By identifying a smaller set of features, while 
maintaining classification performance, the model developed 
for classification would contain fewer model parameters and 
classification time would be reduced. 

The sequential forward selection (SFS) method was used 
to find the minimum number of features. The minimum 
number of features was achieved when the classification 
performance (AUC value) first reaches 99% of the 
classification performance using all features. The SFS 
method was applied to each data set (with bin widths and 
classifier as determined during the Classifier Evaluation 
stage) with performance for each iteration determined by the 
AUC. As for previous evaluations of classifier performance, 
10-fold cross validation was used. 

F. Dataset Evaluation 

To determine whether the combined data set performed 
better or worse than either the FFT or Spike data set 
McNemar's Test was applied. The pairs of data, for this 
study, are formed between the measures of classification 
performance (AUC) of two data sets (e.g. Spike vs. 
combined, FFT vs. Combined, etc). 

Three null hypotheses were tested: 

i. the FFT data set and combined data set have 
equivalent classification performance. 

ii. the Spike data set and combined data set have 
equivalent classification performance, and 

iii. the Spike data set and FFT data set have equivalent 
classification performance. 

The null hypotheses can be accepted if the Chi-square 
statistic (χ

2
) equals zero or if χ

2
 is non-zero H0 but less than a 

critical value. For a test with α = 0.05, the critical value for 
the McNemar χ

2
 is 3.84. If χ

2
 is greater than the critical value 

then the alternate hypothesis (HA) can be accepted. 

To determine the better performing data set, a series of 
classifications were performed in which randomizations were 
introduced. Ten different randomizing seeds were applied to 
the majority class subset sample, while 50 different 
randomizing seeds were applied to the instance order 
randomizations, producing 500 different randomizations for 
each stage and data set type. 

G. Multi-class Classification 

To complete multi-class classification, a new data set was 
constructed containing all five stages based on the combined 
data set format. The length of the longest stage over all 
instances determined the length of all instance vectors. The 
bin widths and classifier determined during previous 
investigations were used for this analysis. 

III. RESULTS AND DISCUSSION 

A. Feature Extraction 

Using the feature set found previously, the number of 
instances from each data file (and associated number of 
features recorded) are shown in Table I. A total of 40 units 
were identified for inclusion into the feature set. 

B. Classifier Evaluation 

1) Preliminary Classifier Evaluation 
Of the 43 classifier algorithms, only 5 met the acceptance 

criteria after the preliminary evaluation phase: Bayesian 
Logistic Regression, Naive Bayes Updateable, LibSVM, 
SMO, and SPegasos. 

2) Stage 1 Classifier Evaluation 
The LibSVM, SMO and SPegasos classifiers were found 

to perform significantly better than the Bayesian Logistic 
Regression and Naive Bayes (Updateable) classifiers across 
all three data sets, the Bayesian Logistic Regression and 
Naive Bayes (Updateable) classifiers were discarded. 

Classification performance of the Spike data set showed 
an improvement with an increase in bin width. The effect of 
increasing the bin width would have had an increasing 
smoothing effect on spiking variances. For the evaluations 
completed during this stage, it appears that spiking variation 
was reduced sufficiently such that stable classification 
performance for bin widths greater than 100 (4ms) was 
possible. Removal of several poor performing bin widths left 
the remaining bin widths as: 100, 200, 500, 1000, 2000, 5000 
and 10000. 

Classification performance for the FFT data set indicated 
that the three classifiers (LibSVM, SMO and SPegasos) 
performed consistently across all bin widths. A slight drop 
off in classification performance for bin widths below 100 
was noticed, resulted in these bin widths being discarded 
leaving the remaining bin widths as: 100, 200 and 500. 

 

TABLE I.  NO. OF TRIALS AND FEATURES PER DATA FILE 

Data File 1 2 3 4 5 6 7 8 9 10 11 12 13 Total 

No. of Instances 
Control 22 14 18 19 24 18 18 17 30 21 28 7 41 277 

RF 9 38 19 35 28 45 54 31 30 30 41 15 35 410 

No. of Features 7 9 12 14 11 13 11 10 12 11 14 9 11 - 
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1) Stage 2 Classifier Evaluation 
Prior to application of the SpreadSubSample filter the 

target class had 410 instances, while the 'Others' class had 
1230 instances. After application each class contained 410 
instances; a total of 820 instances for the data set. Stage two 
of classifier evaluation indicated that the LibSVM classifier 
consistently performed better than the SMO and SPegasos 
classifiers. For subsequent analyses the LibSVM classifier 
will be used. 

Through examination of the LibSVM performance, a bin 
width of 5000, for the Spike data type, maximizes the 
classification performance across all stages of the Spike and 
combined data sets. Similarly, a bin width of 200, for the FFT 
data type, maximized classification performance across all 
stages of both the FFT and combined data sets. 

Classifier Evaluation established that the LibSVM 
algorithm as the best performing classifier, and the bin widths 
producing the best results for each of the data sets is: Spike - 
5000, FFT - 200, and combined - 5000/200. 

2) Parameter Optimization 
Following the guidelines for parameter optimization 

outlined by [8] a coarse grid search for the best (C,γ) 
combination followed by a fine grid search (over 0.25 
intervals) was performed over the parameter values -5 ≤ 
log2(C,γ) ≤ 10. The initial range of parameter values was 
chosen based on preliminary broad range testing of parameter 
values. Classification performance was based on the average 
of two AUC values. The results of the coarse grid search, 
showed that varying the Cost parameter (C) had no impact on 
the classification performance, whereas varying γ had a 
significant impact on classification performance. The fine 
grid search identified a γ parameter of 0.25 to maximize 
classification performance across all five stages. 

C. Binary Classification 

Classification of all stages for all data sets had AUC 
values above 0.87. Classification performance, for the 
Premovement stage, with AUC values above 0.99 for all data 
sets, was consistently higher than that of the other stages. 

TABLE II.  BINARY CLASSIFICATION PERFORMANCE 

 Spike FFT Combined 

Background 0.970 0.976 0.976 

Premovement 0.995 0.998 0.997 

Reach 0.958 0.938 0.960 

Withdrawal 0.894 0.912 0.924 

Feeding 0.876 0.891 0.900 

D. Feature Selection 

The number of features identified, for each movement 
stage, was found to be less than half the full feature set for 
each stage. The number of features required for each stage 
are: Background - 18, Premovement - 5, Reach - 11, 
Withdrawal - 16 and Feeding - 16. From these features, a 
total of 29 unique units are able to provide classification 
results within 99% of the full feature set performance. 

E. Dataset Evaluation 

Using the McNemar's Test comparisons, all null 
hypotheses were rejected. Analyses of the contingency tables 
(not shown due to space limitations) for the McNemar's Test 

comparisons indicated that the Combined dataset statistically 
(p<<0.05) produced the better classification results in 
comparison to the FFT and Spike datasets. 

F. Multi-class Classification 

Classification of all stages had accuracies above 74% (i.e. 
better than chance). As for binary classification, multi-class 
classification performance, for the Premovement stage, with 
accuracies above 96%, was consistently higher than that of 
the other stages. Overall accuracy was 83.6%. 

IV. CONCLUSION 

This study has applied a data driven machine learning 
approach for the purpose of identifying movement related 
spiking patterns. Classification of each stage was completed 
with a high level of certainty in both binary and multi-class 
classification applications. Dimensionality reduction through 
feature selection showed that a small subset of features can 
produce classification results equivalent to the results 
achieved through use of all features. Given the positive 
classification results, extension to automatic classification 
and updating of control models for use with neural prostheses 
is conceivable. 

TABLE III.  MULTI-CLASS CLASSIFICATION PERFORMANCE 

a b c d e <-- classified as 

84.6 0.0 1.9 2.7 10.7 a = Background 

0.0 96.1 0.2 3.4 0.2 b = Premovement 

3.7 0.0 83.6 7.8 4.9 c = Reach 

2.9 1.0 5.6 79.5 11.0 d = Withdrawal 

9.8 0.0 4.4 11.5 74.4 e = Feeding 
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