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Abstract—The technology underlying brain computer inter-
faces has recently undergone rapid development, though a
variety of issues remain that are currently preventing it from
becoming a viable clinical assistive tool. Though decoding of
motor output has been shown to be particularly effective when
using spikes, these decoders tend to degrade with the loss of
subsets of these signals. One potential solution to this problem
is to include features derived from LFP signals in the decoder
to mitigate these negative effects. We explored this solution and
found that the decline in decoding performance that accom-
panies spiking unit dropout was significantly reduced when
LFP power features were included in the decoder. Additionally,
high frequency LFP features in the 100-170 Hz band were
more effective than low frequency LFP features in the 2-4 Hz
band at protecting the decoder from a dropoff in performance.
LFP power appears to be an effective signal to improve the
robustness of spiking unit decoders. Future studies will explore
online classification and performance improvements in chronic
implants by the proposed method.

I. INTRODUCTION

Over the last decade, a preponderance of technological and
computational advances have contributed to the growth of
the rapidly developing field of brain-computer interfaces, or
BCIs. These systems show great promise to restore functions
such as limb movement to impaired subjects by transforming
recorded neural signals into a desired output and actuating
these motor commands via an assistive device. Previous work
has already shown that ensembles of spikes (single unit
activity, or SUA) are particularly effective at decoding a
variety of motor parameters [1]–[5].

While these studies demonstrated impressive results, a
number of technological advancements are required to de-
velop a reliable long-term prosthetic device. One particularly
difficult challenge relates to establishing stable decoding of
neural signals. Decoder instability is closely related to insta-
bilities in the SUA signals; from day to day, the population
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of available spike signals varies, which can directly result in
a degradation in decoding performance [6], [7]. Single units
recorded from multielectrode arrays are particularly unstable
due to factors that include changes in electrode impedance
and micromotion of the electrode arrays [7].

Local field potentials (LFPs) are thought to be composed
largely of postsynaptic currents [8], [9] and represent activity
from thousands of neurons in the immediate vicinity of the
recording microelectrode [10]. Since LFPs represent a large
population of neurons relative to spikes, they are believed
to be more stable than spikes and may serve as a suitable
signal for BCIs [11], [12]. In fact, recent work has shown
that movement-related information in LFPs persists even
when spikes are lost, indicating that instabilities in SUA
do not necessarily lead to a degradation in the information
content of LFPs [12]. A number of studies have explored
the potential of LFPs for both open-loop [5], [13]–[16] and
closed-loop [17] decoding of motor parameters. A subset of
these studies have directly compared the performance of LFP
decoders to decoders constructed with both SUA [5], [12],
[15] and multiunit activity (MUA) [15]–[17].Although it has
consistently been shown that LFPs do not outperform SUA
and/or MUA in motor decoding, there is speculation that
LFPs could be used to provide robustness to decoders [12].
However, few studies to date have investigated the extent to
which LFPs may improve SUA-decoding attempts. One study
used LFP to decode movement state while using spike trains
to decode kinematics [5], while another study compared an
SUA decoder to combined SUA+LFP decoders and found
that the combined decoder only performed marginally better
[15].

Here we explore the hypothesis that decoders that use
both spike counts and LFP power features simultaneously are
more impervious to the effects of spiking unit dropout than
decoders that use only spikes. A male rhesus macaque was
trained to perform a cued center out reach-to-grasp task that
included 4 different reach directions and object types. Both
spiking units (SU, see Materials and Methods) and LFPs were
recorded from putative arm and hand areas of motor cortex
and were used to build a number of different decoders to
discretely classify the movement type. Specifically, SU, high-
and low-frequency LFP features (hfLFP from 100-170 Hz
and lfLFP from 2-4 Hz respectively), and combinations of
SU and LFP features (SU+hfLFP and SU+lfLFP) were used.
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Once the performance of these decoders was characterized,
spiking units were virtually dropped from the 3 decoders
that included them to observe the detrimental effects of spike
dropping on motor decoding. Our results suggest that, with
the inclusion of LFP features, decoders are better able to
tolerate the loss of a number of spiking units as demonstrated
by a reduction in the drop in decoding performance.

II. METHODS

A. Behavioral task

A male rhesus macaque monkey performed a center out
reach-to-grasp task (full details can be found in [18]) in
which he was cued to reach from a center ”home” handle
to one of four radially mounted objects, grasp the object,
and manipulate it using his right hand. The objects consisted
of a push button, a sphere which could be turned, and two
objects which could be pulled toward the subject: a coaxial
rod and a perpendicular rod (mallet). Data collected during
coaxial rod trials were discarded due to poor grounding that
contributed significant noise to the neural recordings. The
timecourse of each trial is detailed in Fig. 1.

Objects were cued randomly, with the exception that a
failed trial resulted in the same object being cued in the next
trial. The session analyzed in this study generated 347 trials.

B. Neural recordings

Both spike trains and LFPs were recorded using 4 floating
microelectrode arrays implanted in contralateral primary mo-
tor cortex (see Fig. 2a). Each array had 16 channels to record
spikes; 8 of these channels also recorded LFP. A total of
58 spikes and 32 LFP channels were recorded. Spikes were
sorted offline using Plexon’s spike-sorting software, which
yielded a mixture of well-isolated single units as well as
multi-units. In this analysis, we were interested in using both
signals, which we collectively refer to as spiking units. Local
field potentials were hardware bandpass filtered from 0.7-175
Hz and digitized at 1 kHz.

C. Feature extraction

Firstly, data were aligned to the time of cue presentation.
Spectral analysis was performed using a windowing tech-
nique known as multi-tapering, which can be found in the
Chronux toolbox [19]. Low frequency spectral estimation
(<35 Hz) was performed using a 500 ms window to give 2 Hz
resolution. Only one taper was used, giving a bandwidth of
±2 Hz. High frequency spectral analysis (>35 Hz) was done
with a 250 ms window (4 Hz resolution) and 5 tapers, giving
a bandwidth of ±12 Hz. For both low and high frequency
analysis, a step size of 5 ms was used.

At a particular time point t, a spectrum was generated
by analyzing a window of LFP from t − T to t, where T
represents the window length. The magnitude of the spectra
was averaged over the frequency bands of interest, namely 2-
4 Hz (lfLFP) and 100-170 Hz (hfLFP). Both of these bands
were previously shown to have movement-related variation
for this particular monkey and session [18].

Fig. 1. Each successful task conforms to the shown timeline. From
movement onset, the monkey has 10 s to reach to the correct object and
close the switch before the trial is aborted and labeled a failure.

D. Classification

Classification was performed using a Naive Bayes classi-
fier, which estimates the class with highest probability given
the input features. In this case, the class corresponds to the
object type and the input features correspond to spike counts
and/or LFP power. Five-fold cross validation was used, so
that the data were split into an 80% training set and a 20%
testing set, and the training set was further divided into a 75%
model building set and a 25% validation set. Each feature
consisted of data within a window of length w that started
at time t0 after cue presentation. Separate models were built
for t0 ranging from 0 to 1000 ms at 5 ms intervals and for
0 ms ≤ w ≤ 1000 − t0 ms. The optimal t0 and w were
determined by finding the parameter pair that maximized the
average decoding accuracy on the validation set from t = 0
to t = 1000 ms. This optimal model was then evaluated on
the testing set. Decoding accuracy was used to evaluate the
quality of the decoders and was defined as the fraction of
trials that were decoded correctly.

E. Dropout analysis

To characterize the effect of any number of lost spiking
units on a decoder’s performance, dropout analysis was
performed in the following way. A single spiking unit was
dropped at random and the resulting decoding accuracy was
calculated. This procedure was repeated 100 times, providing
an average estimate of the effect of losing a single spiking
unit on the performance of the decoder. Spiking unit dropout
was simulated by providing zeros for the spike count for that
particular spiking unit. This procedure was then repeated by
dropping 2 spiking units at random and so on, providing an
estimate on the average effect of spiking unit dropout for any
number of spiking units.

Dropout analysis was performed on the SU decoder to
characterize the detrimental effects of spiking unit dropout.
It was then performed on both the SU+lfLFP and the
SU+hfLFP decoders to determine the extent to which each
set of LFP features mitigated these detrimental effects.

III. RESULTS

A. Classifier performance

Classifiers were separately built and tested for SU, lfLFP,
hfLFP, SU+lfLFP, and SU+hfLFP. Spiking units performed
better than both the lfLFP and hfLFP features in the clas-
sifier (see Fig. 3a). Furthermore, the combined SU+lfLFP
and SU+hfLFP classifiers performed similarly to the SU
decoder. Interestingly, the timing of the lfLFP decoder’s
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Fig. 2. (a) Arrays F, G, H, and I were implanted anterior to the central sulcus
in the putative arm and hand area of M1. (b) A raster plot of a characteristic
spike for all sphere trials. (c) The average relative power spectrogram for all
successful sphere trials taken from the same electrode. The relative power
spectrogram was calculated by dividing the power at each frequency and
timepoint by the baseline power at each frequency, where baseline power
was defined as the average power from -500 ms to 0 ms for all trials of a
particular type.

peak appears to coincide with a decline in the hfLFP de-
coder’s performance, suggesting that the two features may
complement each other well in a combined LFP decoder.
Decoding accuracy rose above the baseline accuracy (defined
as the accuracy preceding cue presentation) 110 ms after
the cue for both the SU and SU+lfLFP decoders; for the
lfLFP, hfLFP, and SU+hfLFP decoders, accuracy exceeded
baseline at 460 ms, 200 ms, and 115 ms respectively (single-
tailed t-test, Bonferroni-corrected for 201 time points tested,
α = 0.05/201 = 2.5× 10−4). In other words, discriminative
information was present in the features of the SU, SU+lfLFP,
and SU+hfLFP decoders first, followed by the hfLFP de-
coder, and lastly the lfLFP decoder, as can be seen in Fig.
3a. For comparison, the average reaction time for monkey X
is 265± 111 ms.

Parameter maps like the one shown in Fig. 3b were used
to identify the optimal time window for a particular decoder.
The parameters for each decoder are displayed in Fig. 3c.
Decoders that incorporated single units (SU, SU+lfLFP, and
SU+hfLFP) tended to be optimized when trained on earlier
and longer time windows compared to the 2 LFP decoders.
Additionally, hfLFP decoders tended to perform best with
shorter window lengths than lfLFP decoders.

B. Dropout analysis

The results of the dropout analysis are displayed in Fig.
4. Decoding performance is shown as a function of number
of spiking units dropped and is displayed at both early
(450 ms) and late (700 ms) timepoints. These timepoints
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Fig. 3. (a) Decoding accuracy over time is plotted between 3 distinct
reach and grasp movements for each of the decoders constructed. Each line
represents an average over the 5 cross-validation folds. (b) An example
of a parameter map to identify the optimal delay (t0) and time window
(w) parameters for the lfLFP decoder, where color represents the average
decoding accuracy over the 1000 ms window following cue presentation. The
white asterisk represents the (t0, w) pair that maximizes decoding accuracy
in the validation set and was thus chosen for this particular lfLFP decoder.
(c) All (t0, w) parameter pairs chosen for each decoder. Five points per
decoder correspond to each of the decoders constructed using 5-fold cross
validation.

were selected because they represent the points at which
the SU+hfLFP and SU+lfLFP decoders optimally improved
upon the SU decoders with regards to spiking unit dropout.
Additionally, for each of the 500 iterations of dropout anal-
ysis (5 folds of cross validation with 100 iterations each),
the difference between the SU+LFP decoders and the SU
decoders was summed across all dropped spiking units at
each timepoint evaluated. This gave a time-varying estimate
for the amount of improvement the decoder experienced from
adding each set of LFP features (lf- and hfLFP) in the face
of spiking unit dropout. We call this metric the LFP dropout
improvement. The average of these 500 estimates is plotted
for each timepoint evaluated for both the lfLFP and hfLFP
decoders (Fig. 4c). Statistically significant improvement was
then determined for both lfLFP and hfLFP features at each
timepoint (single-tailed t-test, Bonferroni-corrected for 41
time points tested, α = 0.05/41 = 1.2 × 10−3). Notice
that the early and late timepoints chosen for Fig. 4A and
4B represent the timepoints at which the hfLFP and lfLFP
dropout improvements were maximized respectively.

These results indicate that decoding performance is nega-
tively affected by spiking unit dropout and that both lfLFP
and hfLFP features reduce these negative effects. Interest-
ingly, the addition of hfLFP features to the SU decoder seems
to mitigate the effects of spiking unit dropout substantially
more than the addition of lfLFP features, in spite of the fact
that both feature types contain substantial information about
the movement (see Fig. 3).
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Fig. 4. The average decoding performance versus number of neurons
dropped is shown at (a) 450 ms and (b) 700 ms after cue presentation. These
results are averaged over 100 repetitions of the dropout analysis for each
of the 5 folds of cross-validation. (c) The difference between the SU+LFP
and SU decoders at each timepoint evaluated was averaged and plotted here.
Asterisks show the timepoints where these differences are statistically larger
than zero, indicating that the LFP features improved the decoder under the
spiking unit dropout conditions.

IV. DISCUSSION

Our results agree with prior studies showing that the addi-
tion of LFP features to a spike train decoder do not improve
the performance of the decoder under normal conditions.
However, further analysis indicates that these LFP features
can offer an advantage over SU-only decoders. Specifically,
when a subset of the spiking units are lost and can no
longer be recorded, LFP features reduce the extent to which
decoding performance declines. The 100-170 Hz frequency
band appears to be the most effective, while the 2-4 Hz
frequency band offered modest protection against spiking unit
dropout.

It is worth noting that the most substantial improvement
of SU+hfLFP decoders over SU decoders occurs when many
spiking units are dropped. This condition might occur under
the case of array micromotion, where all electrodes on a
given array shift relative to the neural tissue. Under these
circumstances, a number of electrodes may be further from
spiking units from which they were recording. In order for the
results described here to be valid under these circumstances,
it is necessary to assume that the LFP recordings would not
change substantially in the case of array micromotion.

Ultimately, LFPs can be recorded from the same arrays
as spikes (assuming the appropriate recording hardware is
used), and there is negligible computational cost to calculate
LFP power features and incorporate them into a decoder.
Inclusion of these features, particularly in the 100-170 Hz
range, may protect a decoder from substantial declines in
decoding performance caused by spiking unit dropout. For
these reasons, it is advantageous to include these features in
motor decoding classification schemes.
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