
  

 

 

Abstract— Observing an action being performed and 

executing the same action cause similar patterns of neural 

activity to emerge in the primary motor cortex (MI). Previous 

work has shown that the neural activity evoked during action 

observation (AO) is informative as to both the kinematics and 

muscle activation patterns of the action being performed, 

although the neural activity recorded during action observation 

contains less information than the activity recorded during 

action execution (AE).  In this study, we extend these results by 

comparing the representation of different kinematic variables in 

MI single /multi unit activity between AO and AE conditions in 

three rhesus macaques. We show that the representation of 

acceleration decreases more significantly than that of position 

and velocity in AO (population decoding performance for 

acceleration decreases more steeply, and fewer neurons in AO 

encode acceleration significantly as compared to AE). We 

discuss the relevance of these results to brain-machine 

interfaces that make use of neural activity during AO to 

initialize a mapping function between neural activity and motor 

commands.  

I. INTRODUCTION 

The patterns of neural activity evoked in the primary 
motor cortex during action observation (watching another 
actor perform an action, AO) are similar to the patterns 
evoked during action execution (performing the action 
yourself, AE) and contain detailed information about the 
kinematics of observed movements and the muscle activation 
patterns that would cause them [3-6]. This fact has been 
exploited to initialize the mapping function between neural 
activity and motor commands in brain-machine interfaces for 
people who are paralyzed [1, 2]. While a paralyzed person 
can no longer perform motor acts, he or she can still observe, 
imagine, or attempt to make movements.  
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Previous results examining the relationship between 
single / multi units and observed actions reported that neural 
units contain less information about the motor task during 
AO and that this information is delayed relative to AE 
[3,4,6]. However, no systematic investigation has yet been 
made concerning more subtle differences in the kinds of 
motor variables represented in the primary motor cortex 
between AO and AE. Because there is no somatosensory 
feedback available during AO, we expect that the cortical 
representation of certain movement variables may decline 
more severely in AO relative to others. In this study, we 
show that the representation of hand acceleration in motor 
cortical activity decreases more steeply than that of hand 
position and hand velocity when rhesus macaques observe 
previously executed movements played back to them on a 
screen. The results, replicated in three monkeys and ten 
datasets, suggest that the representation of acceleration and 
force-related variables (hand acceleration, joint acceleration, 
joint torque) during AO is impoverished, and that therefore 
brain-machine interfaces decoding acceleration or force-
related signals that expect to initialize a decoding function 
based on AO activity may perform poorly. 

II. METHODS 

A.  Behavioral Task 

Three adult rhesus macaques (Macaca mulatta) were 
trained to control a cursor in a two–dimensional workspace 
using a two-link robotic exoskeleton (BKIN Technologies, 
Kingston, ON). The animal sat in a primate chair with its 
arm abducted 90 degrees and supported by the robot such 
that all movements were made within the horizontal plane. 
Direct vision of the arm was precluded by a horizontal 
projection screen. Visual feedback was available via a cursor 
projected onto the screen. The position of the cursor was 
controlled by either the monkey’s hand position or an 
automatic replay of the monkey’s movements that were made 
earlier in the same experimental session (action observation).  

The random target pursuit (RTP) task required the monkey 
to move a cursor (6 mm diameter) through a sequence of 
square targets (2.25cm

2
), each of which was presented one at 

a time. Each time the monkey hit a target, a new target 
appeared immediately in a random location. In order to 
complete a successful trial the monkey was required to 
sequentially acquire seven targets (action execution) or 
watch seven targets being acquired (action observation). A 
trial was aborted if any movement between targets took 
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Figure 1. Average decoding performance (cross-validated, fraction of 

variance accounted for, FVAF) in action execution vs. action observation 

conditions depicted for five kinematic variables, ten datasets, and three 

monkeys. Lines protruding from the symbols represent 95% confidence 

intervals of the mean assuming that the data are normally distributed. For 

most datasets, decoding performance is superior during action execution, 

as expected.  

longer than 2.5s or 5s (depending on the dataset), or if the 
monkey moved its arm outside of a 1 cm radius circle during 
action observation. Only successfully completed trials were 
included in the data analysis. An average of 347 seconds of 
action observation and 394 seconds of action execution were 
analyzed for each dataset. More details about these datasets 
can be found in previous reports [3, 6-8]. 

B. Electrophysiology 

The monkeys were chronically implanted with a 100-
electrode microelectrode array (Blackrock Microsystems, 
Inc., Salt Lake City, UT) in MI contralateral to the arm used 
for the task.  During each recording session, signals from up 
to 96 electrodes were amplified (gain of 5000), band-pass 
filtered between 0.3 Hz and 7.5 kHz, and recorded digitally 
(14-bit) at 30 kHz per channel using a Cerebus acquisition 
system (Blackrock Microsystems, Inc., Salt Lake City, UT). 
The neural data used in our analyses were comprised of 
single and multiunit spiking events that were sorted offline 
for eight of the datasets and online using time-amplitude 
sorting windows for two. On average, 69.2, 71.6, and 58 
single / multi units were sampled for monkey Mk, monkey B, 
and monkey Rs per session, respectively. All of the surgical 
and behavioral procedures were approved by the University 
of Chicago Institutional Animal Care and Use Committee 
and conform to the principles outlined in the Guide for the 
Care and Use of Laboratory Animals. 

C.  Population Decoding 

 All population decoding results used a linear model to 
predict kinematic variables at discrete, 50 ms time steps from 
a 600 ms history of binned firing rates (50 ms bin width). 
Specifically, signal Sk(t) at discrete time bin t (where k is an 
index representing a kinematic variable) is reconstructed by 
the decoder as follows:  

 , 

where i indexes over the C neurons, j indexes over time bins, 
N(i, t-j) is the spike count of neuron i at time bin t-j, A are the 

coefficients of the filter, and  is an offset parameter for 

signal Sk. Here, B = 12. The coefficients in A were fit using 
ridge regression as in [9]. The decoders were cross-validated 
using ten folds (i.e., decoder coefficients were trained on 
90% of the data and tested on the remaining 10%; this 
process was repeated 10 times to get an unbiased estimate of 
the decoder’s performance).  

D.  Single / Multi Unit Encoding Model 

The following linear encoding model was used to 
determine which kinematic variables the neural units were 
significantly encoding: 

fn(t) = c0 + cpos*p(t+τpos) + cvel*v(t+ τvel) + cacc*a(t+ τacc), 

where fn(t) is the binned (50 ms bin width) firing rate of 
neuron n at discrete time step t, p(t+τpos) is a column vector 
of X and Y hand position, v(t+ τvel) is a column vector of X 
and Y hand velocity, a(t+ τacc) is a column vector of X and Y 
hand acceleration, τpos, τvel, and τacc are time leads or lags 
representing a temporal offset of between -250 and 250 ms, 

cpos, cvel, and cacc are row vectors of model coefficients and c0 
is a scalar offset term.  

III. RESULTS 

In this study, three rhesus macaques made 2D, planar 
reaching movements (action execution) and then watched 
these same movements played back to them as they held their 
arm stationary (action observation). The movements were 
completed one after the other in a continuous fashion with no 
defined breaks.  

A.  Population Decoding 

To determine how well different kinematic variables 
were represented in MI during action observation (AO) vs. 
action execution (AE), we fit a linear decoding model to the 
data that predicted each kinematic variable as a function of 
the firing rates of neural units in the primary motor cortex. 
Our decoding model used binned firing rates (50 ms bin 
width) and 12 bins of firing rate history for each neuron (600 
ms filter length) to predict kinematic variables binned at 50 
ms time steps. We measured decoding performance by 
computing the 10-fold cross-validated fraction of variance 
accounted for (FVAF) by the decoder (similar to [9]), 
averaging over the different dimensions of the kinematic 
variables to compute a single FVAF score when appropriate 
(hand position, hand velocity, hand acceleration, and target 
position have both X and Y dimensions in our task). 
Decoders were trained and tested within the same condition 
(either AO or AE).  

The overall decoding results are depicted in Figure 1. As 
expected, it is more difficult to decode most kinematic 
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Figure 2. For each dataset, decoding performance for position, velocity, and acceleration in AO is compared to that in AE by dividing AO FVAF by AE 

FVAF to yield a normalized performance metric. The distributions of the 10-fold cross-validated performance metrics are drawn as boxplots (median values 

are plotted with black dots surrounded by circles;  bottom and top of vertical bars represent first and third quartiles; outliers > 6 std from the mean are 

plotted as open circles). Most data points are below one because neural activity during AO is not as informative as neural activity during AE. For all ten 

datasets, acceleration decoding performance decreases more severely in AO as compared to velocity decoding. In all but one dataset (mk 080731), 

acceleration decoding performance also decreases more severely than position decoding. See Results for the statistics.  

 
variables during AO as compared to AE. Velocity and 
acceleration have the strongest linear representation in the 
neural activity across both conditions (highest decoding 
FVAF), while position, target position, and speed are more 
poorly represented.  

In Figure 2, we test whether or not the neural 
representation of certain variables decreases more severely 
than others in AO. Focusing on position, velocity, and 
acceleration, we divided AO decoding performance by AE 
decoding performance for each dataset and kinematic 
variable to reveal differences in AO decoding decline. Figure 
2 shows that acceleration decoding performance decreases 
more steeply than that of velocity and position (statistically 
significant difference in 10 out of 10 datasets when 
compared to velocity, and in 9 out of 10 datasets when 
compared to position). Significance was determined by a t-
test with p<0.05. To correct for multiple comparisons, we 
did a permutation test to compute the probability that, by 
chance, 19 or more t-tests would be significant for any one of 
the three variables when it was compared to the other two. 
We shuffled the normalized FVAF scores in Figure 2 within 
each dataset one million times and did the same t-tests. The 
largest number of significant t-tests was 9 (which occurred 
only twice), making the probability of observing 19 or more 
significant t-tests by chance at least less than 10

-6
. 

B.  Single Neural Unit Encoding 

In addition to population decoding, we also examined the 
encoding of kinematic variables at a single neuron level. We 

used methods similar to [10] to determine whether or not 
each neural unit was tuned to position, velocity, or 
acceleration in a way that could not be explained by 
correlations with other kinematic variables. For each neural 
unit, we fit and evaluated various linear encoding models 
that used one, 50 ms bin of X and Y hand position, X and Y 
hand velocity, and X and Y hand acceleration to predict the 
binned firing rate of the neural unit at each 50 ms time step 
(see Methods for the equation). We considered 11 different 
time leads and lags for each kinematic variable (evenly 
spaced between -250 and 250 ms), for a total of 11

3
 possible 

“full” models that included all three kinematic variables.  

For a neural unit to be significantly tuned to a kinematic 
variable v, the performance of the full encoding model 
containing v (measured by 10-fold cross-validated FVAF) 
had to be significantly greater (t-test, p<0.05) than that of an 
encoding model that did not include v but included the other 
two variables. This had to be true at every possible time lead 
and lag of the other two kinematic variables (11

2 
t-tests must 

all be significant) but at any time lead or lag of v (11 
possibilities to pass the set of 11

2 
t-tests). A neural unit 

meeting this strict criterion could be said to encode the 
kinematic variable v in a way that could not be explained by 
encoding of a different kinematic variable that was 
correlated with v at a zero or non-zero temporal offset. 
Under this criterion, a neural unit could encode more than 
one variable. Our kinematic variable criterion is stricter than 
the typical requirement that a regression predicting firing 
rate from position, velocity, and acceleration be significant 
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Figure 3. Fraction of all neural units tuned to at least one of the three 

variables (position, velocity, acceleration) that were tuned to position, 

velocity, or acceleration in a way that could not be explained by correlations 

with other kinematic variables. For all 10 datasets, more neural units were 

significantly tuned to acceleration during AE as compared to AO.  

with p < 0.05 (436 of 677 units met the regression criterion 
but not the variable criterion, whereas 0 units met the 
variable criterion but not the regression criterion). 

Figure 3 shows the results of this linear encoding analysis 
for each dataset, kinematic variable, and condition (AO vs. 
AE). The fraction of all tuned neurons (neurons that met the 
encoding criterion for any variable) that significantly 
encoded position, velocity, or acceleration during AE is 
plotted against the fraction observed during AO for each 
dataset and variable. For all ten datasets, the fraction of 
neural units encoding acceleration is greater in AE than AO, 
complementing the decoding results presented in section A. 
For 8 of the 10 datasets, there is also a greater fraction of 
velocity tuned units in AE relative to AO. The deficit in units 
encoding acceleration and velocity during AO is 
counterbalanced by a relative over-abundance of position-
tuned neural units. 

IV. DISCUSSION 

In this study, we examined how the neural representation 
of kinematic variables in a 2D planar reaching task changes 
in MI during action observation (AO) relative to action 
execution (AE). While it is well known that movements are 
more weakly represented in AO relative to AE in general 
[3,4,6], it is unknown if the representation of certain 
movement variables decreases more severely than others 
during AO. In this study, we showed that not all variables 
decline equally; rather, the neural representation of hand 
acceleration declines more severely than that of hand 
position or hand velocity during AO. Both population 
decoding (Figure 1 and Figure 2) and neural unit encoding 
analyses (Figure 3) confirm this result in three monkeys and 
ten datasets. In most datasets (8 out of 10), the relative lack 
of acceleration-tuned neural units in AO was 
counterbalanced by an overabundance of position-tuned 
neural units (Figure 3).  

Action observation has been proven to be a useful tool to 
initialize mapping functions between neurons and motor 
commands for brain-machine interfaces that are intended to 
be used with paralyzed people [1, 2]. An impoverished 
neural representation of acceleration could make it more 
difficult to implement a biomimetic brain-machine interface 
that aims to decode acceleration or force-like variables from 
primary motor cortex [11, 12]. In the ten datasets presented 
here, joint torque can be predicted from hand acceleration 
with a single bin linear model with very high accuracy (mean 
cross-validated FVAF of > 0.97 across all datasets), meaning 
that acceleration is highly correlated with joint torque and so 
the results likely apply to this variable as well.  
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