
  

 

Abstract— A system using electroencephalography (EEG) 
signals could enhance the detection of mental fatigue while 
driving a vehicle. This paper examines the classification 
between fatigue and alert states using an autoregressive (AR) 
model-based power spectral density (PSD) as the features 
extraction method and fuzzy particle swarm optimization with 
cross mutated of artificial neural network (FPSOCM-ANN) as 
the classification method. Using 32-EEG channels, results 
indicated an improved overall specificity from 76.99% to 
82.02%, an improved sensitivity from 74.92 to 78.99% and an 
improved accuracy from 75.95% to 80.51% when compared to 
previous studies. The classification using fewer EEG channels, 
with eleven frontal sites resulted in 77.52% for specificity, 
73.78% for sensitivity and 75.65% accuracy being achieved. 
For ergonomic reasons, the configuration with fewer EEG 
channels will enhance capacity to monitor fatigue as there is 
less set-up time required. 

I. INTRODUCTION 

Fatigue whilst driving is known to be as major cause of 
accidents in transportation. Fatigue symptoms include 
increased feelings of tiredness and reduced alertness that 
results in decreased reaction time to respond to changes in 
conditions and to perform a task.  Fatigue is known to lead to 
driving related traffic accidents, injuries and fatalities [1]. As 
a result, there is a need for an automatic detection and 
monitoring of driver related fatigue. 

From the physiological parameters point of view, a 
counter-fatigue monitoring device can use the signals from 
eye movement using electrooculography (EOG) [2], heart 
rate variability (HRV) using electrocardiography (ECG) [3] 
and brain signal using electroencephalography (EEG) [4, 5]. 
This paper explores fatigue detection using parameters from 
EEG signals to form a brain monitoring device. A system 
using EEG is believed to be effective in detecting mental 
fatigue and provide an output that could alert a driver, thus 
preventing attention lapses that may cause a traffic accident. 
The EEG-based system of this application would enhance the 
natural central nervous system output. 
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The functional basic components of  EEG-based system 
classification consists of several elements including signal 
measurement using the EEG and computational intelligence 
of the EEG signal which includes signal pre-processing, 
features extraction and classification processes with the 
output the classifier [6, 7]. For the features extraction in the 
EEG analysis, power spectral density (PSD) has been used 
widely in the EEG analysis especially in fatigue study [8, 9]. 
The power spectrum estimation is calculated from the Fast 
Fourier Transform (FFT) which converts the time based EEG 
data into the following frequency bands of EEG rhythms: 
delta (δ), theta (θ), alpha (α) and beta (β).  For the classifier 
in the EEG study, two groups are considered; linear and non-
linear classifiers. A linear classifier is simpler than a non-
linear classifier, as it uses a linear mathematical model only 
for the classifier training, however, for EEG-based 
classification, it will be a less effective method. As a result, a 
non-linear method of classification should be investigated 
given they could lead to improved classification of fatigue. 
For instance, an artificial neural network (ANN) is a popular 
non-linear classifier algorithm used in biomedical study [10]. 

An experimental study was conducted using the EEG to 
measure mental fatigue versus alert brain activity states to 
determine potential as a fatigue countermeasure device. The 
overall EEG fatigue classification was found to be around 
76% on the original dataset without any of the regrouping 
methods for the dataset [8]. The PSD was used as the feature 
extraction method. The ANN was used for the classification 
algorithm.  

To continue this line of research, this paper explores the 
use of advanced computational intelligence techniques in 
order to improve the accuracy of the fatigue versus alert 
classification. An alternative method based on the 
autoregressive (AR) modelling of PSD estimation is used as 
the feature extraction method. For the classifier, a new 
optimization technique in computational intelligence namely 
a fuzzy particle swarm optimization with cross mutated 
(FPSOCM) has been introduced [11]. Recently, the 
FPSOCM has been applied to optimize the training of an 
artificial neural network (FPSOCM-ANN) for three mental 
task classifications (mental arithmetic, mental letter 
composing and imagining a Rubik’s cube rolling) [12, 13] 
with a promising result of improved accuracy. Thus, the 
FPSOCM-ANN is examined as the classification algorithm in 
this study for the fatigue vs. alert states classification. Also 
for ergonomic reasons, a classification with fewer EEG 
channels was also included. Previous results have shown that 
there was increased fast wave activity of fatigue mostly in the 
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frontal area [5]. This paper also includes the classification 
using only the frontal sites of the EEG channels. 

II. METHODOLOGY 

A. Components for EEG-based Fatigue Classification 

The process began with the collection of brain signals 
using a multi-channel EEG system for data acquisition during 
a fatigue study with non-professional drivers. The output of 
the data acquisition process is in a digital form which will be 
continued with the features extraction that transforms the 
signals into useful features corresponding to the mental 
strategy of the system. In this study the mental strategy is for 
fatigue detection. As a result, output of the classification 
forms two states, fatigue and alert mental status. 

Data Collection
for Fatigue study

Features
Extraction

Training, 
optimization &
Classification

Output (2 states) : 
Fatigue or Alert

Pre-processing:
Segmentation

 

Figure 1.  Components for EEG-based fatigue classification 

B. Procedure for Data Collection of Fatigue Study 

Data set of fourteen healthy participants with the age 
between 18 and 55 years obtained from the previous study 
was used [8]. Participants were given information of the 
study and the informed consent form was signed before 
commencing the experiment. The study was approved by the 
institutional research ethics committee. The Divided 
Attention Steering Simulator (DASS) from Stowood 
Scientific Instruments was used for a driving simulator task. 
Here, participants needed to ensure that they kept driving at 
the centre of the road in the simulation task until the signs of 
fatigue were shown. The experiment was stopped if facial 
signs were detected (such as nodding and extended eyes 
closure) or if they were driving off the road in the simulation 
driving task for greater than 15 seconds. The maximum time 
for the simulated driving was specified at 2 hrs. 

EEG signals were recorded by attaching a 32 channels 
EEG system, the Active-Two system from Biosemi with the 
electrode position based on the International 10-20 system. 
These positions are: FP1, AF3, F7, F3, FC1, FC5, T7, C3, 
CP1, CP5, P7, P3, PZ, PO3, O1, OZ, O2, PO4, P4, P8, CP6, 
CP2, C4, T8, FC6, FC2, F4, F8, AF4, FP2, FZ and CZ. The 
sampling rate of the system was down sampled from 2048Hz 
to 256 Hz. 

C. Signal Pre-processing 

 A program using the second-order blind identification 
(SOBI) and canonical correlation was used for removing  
artifact [14]. For the alert group of data, the first 5 mins of 
EEG data when starting the driving simulation task was 
chosen and the fatigue group of data was selected from the 
last 5 mins of EEG data before the task was stopped. Then in 
each group of the data (alert and fatigue), 20s duration of 
segment was taken and the first 20s segment was selected for 
further analysis that had the least movement artifact. As a 
result, 20s of alert state and another 20s of fatigue state were 

available for each participant. A moving window of 2s with 
overlapping 0.25s was applied to the 20s segments which 
provided 73 overlapping segments on each state. With the 14 
participants, a total of 1022 units of datasets were formed on 
alert state and another 1022 units for the fatigue state. 

D. Features Extraction 

An autoregressive (AR) model was applied for 
calculating the power spectrum. The calculation of the AR 
modelling is as follows: 
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where x(m) represents the signal at time m, P is the order of 
the AR,  a(k) represents the AR coefficients and e(m) 
represents the white noise  with the zero means error and 
finite variance. It is assumed to be a random process which is 
independent of the previous value of the signal. The Burg 
method is one of the AR spectral estimation methods which 
have been used in the EEG application [9]. The PSD from the 

calculation of the Burg method ( ˆ ( )BURGP  ) is as follows: 
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where ˆ ( )pa k are the estimated AR parameters and  ˆpe are the 

reflection coefficients which are to obtain the total least 
square error. The AR order of 25 was used in this study. 

AR-based PSD is applied to 2s of each EEG segment 
with 512 points for 256Hz of sampling rate. This converts the 
time EEG segment into the frequency domain. There are 4 
EEG bands used for the features which include: δ (0.5-3Hz), 
θ (3.5-7.5Hz), α (8-13Hz) and β (13.5-30Hz). The total 
power of each EEG band was calculated using the trapezoidal 
rule and this provided 4 power values for each of the EEG 
bands. A total of 128 units of power (32 EEG channels) or 44 
units of power (frontal sites of EEG channels) were made 
available as the input features on each set of segment which 
were used for the classification process.  

E. Classification  

The fuzzy particle swarm with cross mutated operation of 
artificial neural network (FPSOCM-ANN) as a non-linear 
method was used for the classifier. It is composed of a three 
layers feed forward neural network with a single hidden layer 
as shown in Fig. 2. The FPSOCM was used to optimize the 
neural network training. 

 
Figure 2.  ANN structure for the fatigue vs. alert classification 
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These features were normalized into [0 1] range prior to 
the classification as the log-sigmoid was used for the transfer 
function. The output vector zk and the normalization are 
computed as follows: 
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where f(.) is the transfer functions of ANN, m is the input 
nodes number (i=1, 2, …, m), l is the hidden nodes number 
(j=1, 2, …, l), p is the number of output (k=1, 2, …, p), wji is 
the weight to the hidden unit yj from input unit xi, wkj is the 
weights to output (zk) from hidden unit (yj), bj and bk are the 
biases. Xi is the result of features after normalization. X is the 
result of features before normalization. Xmin is the minimum 
value features and Xmax is the maximum value of the features. 

In the FPSOCM [11] for ANN optimization, a fuzzy 
inertia weight and a cross-mutated operation were introduced 
for performance searching improvement and to handle the 
issue of local minimal trapping. The process was started by 
the initialization of the particle swarm. The particle swarm 
X(t)  was constructed from the ANN parameters and was 
evaluated by fitness function. Prior to the iterative PSO 
process, the probability of cross mutated (CM) operation was 
defined.  The value of inertia weight was controlled by two 
inputs of the fuzzy inference system (FIS), the normalized 
standard deviation (SD) of cost value among all the particles 
and the iteration stage. After the inertia weight has been 
calculated, the velocity was updated.  

The FIS was used to find the control parameter. The 
velocity of all particle element swarm was evaluated by 
defined probability of CM during the CM process. A random 
particle with the value in the range [0 1] was generated. If the 
random particle value has a value more than the probability 
of the CM operation, then the CM operation will be 
calculated. The maximum velocity value was used as the 
limit. An updated particle swarm was generated after the CM 
operation process. The process was repeated until a defined 
number of iterations (T) was reached. The aim for the 
FPSOCM-ANN is to minimize the fitness value. Fig. 3 shows 
the FPSOCM procedure. 

Figure 3.  The procedure for FPSOCM-ANN 

The parameters of training of the FPSOCM-ANN for 
fatigue vs. alert classification were as follows: the size of the 
swarm was 50, acceleration constant was 2.05, the value of 
maximum velocity was 0.2, each CM probability was 0.005 
and the iteration number was 2000. The training of the 
FPSOCM-ANN was repeated ten times for different hidden 
neurons with variation from 3-25 units to obtain the best 
number with highest classification accuracy. As a result the 
accuracies were the mean value of ten accuracy results. 

 A k-fold cross-validation (k3) was used for the accuracy 
performance evaluation to avoid the issue of over-fitting in 
machine learning. The total of 1022 dataset from fatigue was 
divided into 3 folds (fold 1 = 336 sets, fold 2=336 sets and 
fold 3=350 sets). One of these folds (hold out set) was used 
for the testing. The remaining folds were used to train the 
classifier function. The mean value accuracy of the three 
folds was used for the overall accuracy. 

III. RESULTS 

The results of the classification between fatigue and alert 
states using the 32 EEG channels are shown in Table 1. For 
the first fold, the correctly classified rate for the alert state 
was 80%, for the fatigue state was 78.57% and the accuracy 
was 78.57%. For the second fold, the correctly classified rate 
for the alert state was 82.74%, for the fatigue state was 
80.65% and the accuracy was 81.69%. In the third fold, the 
correctly classified rate for the alert state was 83.33%, for the 
fatigue state was 79.17% and the accuracy was 81.25%. The 
mean of the classification rate of the three folds for the alert 
state (specificity) was 82.02%. The mean of the classification 
rate of the three folds for the fatigue state (sensitivity) was 
82.02%. The overall accuracy of the classification fatigue vs. 
alert states was 80.51%. 

TABLE I.  RESULT CLASSIFICATION OF  FATIGUE VS. ALERT OF 32 EEG 
CHANNELS WITH 3-FOLD CROSS VALIDATION 

K-Folds  Alert Fatigue Overall 

1st- 
Fold  

Total test data 350 350 700 

Correctly classified 280 270 550 

Classification Rate 80% 77.14% 78.57% 

2nd-
Fold 

Total test data 336 336 672 

Correctly classified 278 271 549 

Classification Rate 82.74% 80.65% 81.69% 

3rd- 
Fold 

Total test data 336 336 672 

Correctly classified 280 266 546 

Classification Rate 83.33% 79.17% 81.25% 

Mean of Classification Rate 82.02% 78.99% 80.51% 

 Specificity Sensitivity Accuracy 

The comparison result to the previous study [8] is shown 
in Table II. The original result from the previous study was 
the one without any re-grouping dataset methods. In the 
previous study the overall specificity was 76.99% and this 
value is improved in this paper to 82.02%. The overall 
sensitivity is also increased; the sensitivity of the previous 
study was 74.92% and this paper provides improved 
sensitivity to 78.99%. The overall accuracy of the 
classification between fatigue and alert states is improved to 
80.51% in this paper from 75.96% of the previous study. 

begin 
         t  0       
         Initialize swarm particle X(t)  
         Define probability of CM operation  
         output (ƒ(X(t))) 
         while (not termination condition) do 
                  t  t 1 
                  output iteration stage 
                  output   the normalized SD of cost value all the particles 
                  Find inertia weight using FIS 
                  Update velocity  
                  Find the control parameter by using FIS 
                  Generate a random number 

                 if    random number >  probability of CM each particle 

                      then Perform cross-mutated operation 
                  output (ƒ(X(t))) 
         end 
         return the best swarm particle 
end 
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TABLE II.  COMPARISON RESULT TO THE PREVIOUS STUDY ON THE 
SAME DATASET OF 32 EEG CHANNELS. 

Study 

Correctly identified 
Accuracy 

(%) 
Alert Fatigue 

Specificity (%) Sensitivity (%)

Previous study [8] 76.99% 74.92% 75.96% 

This Study 82.02% 78.99% 80.51% 

TABLE III.  RESULT CLASSIFICATION OF  FATIGUE VS. ALERT OF 
FRONTAL EEG CHANNELS (11 CHANNELS) WITH 3-FOLD CROSS VALIDATION 

K-Folds  Alert Fatigue Overall 

1st- 
Fold  

Total test data 350 350 700 

Correctly classified 264 258 522 

Classification Rate 75.43% 73.71% 74.57% 

2nd-
Fold 

Total test data 336 336 672 

Correctly classified 258 245 503 

Classification Rate 76.79% 72.92% 74.85% 

3rd- 
Fold 

Total test data 336 336 672 

Correctly classified 270 251 521 

Classification Rate 80.30% 74.70 77.53% 

Mean of Classification Rate 77.52% 73.78 75.65% 

 Specificity Sensitivity Accuracy 

For improved ergonomic operation, a system with fewer 
EEG channels is preferable as it requires less time for set-up. 
The result from the previous study reported that there was an 
increase of fast wave activity of fatigue mostly in the frontal 
area [5]. As a result, this paper investigates the classification 
on the frontal sites with a total of 11 EEG channels (FP1, 
AF3, F7, F3, FC1, FC2, F4, F8, AF4, FP2 and FZ).The 
results of the classification between fatigue and alert states 
using the frontal sites of 11 EEG channels are shown in Table 
III. For the first fold, the correctly classified rate for the alert 
state was 75.43%, for the fatigue state was 73.71% and the 
accuracy was 74.57%. For the second fold, the correctly 
classified rate for the alert state was 76.79%, for the fatigue 
state was 72.92% and the accuracy was 74.85%. In the third 
fold, the correctly classified rate for the alert state was 
80.30%, for the fatigue state was 74.70% and the accuracy 
was 77.53%. The mean of the classification rate of the three 
folds for the alert state (specificity) was 77.52%. The mean of 
the classification rate of the three folds for the fatigue state 
(sensitivity) was 73.78%. The overall accuracy of the 
classification fatigue vs. alert states was 75.65%. 

IV. CONCLUSION 

In this paper advanced computational intelligence was 
applied for fatigue versus alert classification using the AR-
based PSD as the feature extraction algorithm and 
FPSOCM-ANN as the classification algorithm. The dataset 
was taken from an experimental study that obtained the 
fatigue and alert states using an EEG system attached on the 
scalp [8]. The results for 32-EEG channels showed an 
improved specificity from 76.99% of the previous study to 
82.02% in this paper, an improved sensitivity from 74.92% 
of the previous study to 78.99% in this paper and an 
improved accuracy from 75.96% of the previous study to 
80.51% in this paper. The resultant classification using 

fewer EEG channels of only frontal sites (11 channels) of 
EEG channels has also been investigated with the overall 
specificity at 77.52%, sensitivity at 73.78% and accuracy at 
75.65%. The benefit of using fewer EEG channels include 
less set-up time required and this may assist in an eventual 
fatigue real-time monitoring device based on EEG signals. 
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