Comparative Performance Investigation of DICOM C-STORE and
DICOM HTTP-based Requests

Amandine Le Maitre, Jude Fernando and
Yannick Morvan
b-com Institute of Research and Technology,
Rennes, France

amandine.lemaitre@b-com

Abstract— Increasingly, physicians have to access clinical im-
ages distributed over multiple healthcare organizations. To this
end, two DICOM protocols may be used: a regular DICOM C-
STORE transaction or an HTTP-based DICOM request such as
WADO or STOW. A major problem of the DICOM C-STORE
transaction is that it is inefficient to transfer DICOM data sets
that consist of thousands of DICOM objects (such as functional
MRI data set) because of the large number of negotiations
involved in the transfer. We compare the performances of C-
STORE transactions with the STOW HTTP-based protocol, and
show that the STOW protocol can divide the transfer time by
about 50 when compared to a DICOM C-STORE transaction
for studies that consists of thousands of DICOM objects.

I. INTRODUCTION

The development of internet technologies is transforming
the way hospitals access, share, visualize and archive clinical
data. This development is especially reshaping the borders
of hospital information systems and is transforming isolated
departmental data repositories into interconnected hospital
networks. More specifically, these isolated data repositories
increasingly have to connect to each other and share patient
records to separate hospital departments or even to distant
clinical enterprises. For example, sharing patient records
is especially important for collaborative clinical processes
such as Multi-Disciplinary Team (MDT) meetings, during
which multiple physicians from various clinical organizations
discuss a diagnostic and treatment of a patient.

One can distinguish two approaches for sharing clinical
data. A first method is to employ centralized cross-enterprise
repositories. A major advantage of this approach lies in its
simplicity[1]. However, these centralized repositories involve
major investments in infrastructures. Additionally, the clini-
cal organization loses control over patient data. Finally, shar-
ing clinical data outside the border of the hospital mitigates
the security and increases the complexity of the solution
deployment to fulfill regulations such as Health Insurance
Portability and Accountability Act (HIPAA) in the US. A
second approach is to interconnect data repositories dis-
tributed over multiple enterprises. This second approach has
multiple advantages. First, it allows clinical organizations to
maintain control over patient data. Additionally, a distributed
environment lowers entry barriers to network-based patient
care. In this work, we focus on the second approach that is
aiming at sharing images distributed across multiple clini-
cal organizations. In that context, a framework that allows

978-1-4244-7929-0/14/$26.00 ©2014 IEEE

Gilles Mevel and Emmanuel Cordonnier
ETIAM, Rennes, France

gilles.mevel@etiam.com

physicians to share images across multiple organizations is
the Cross Enterprise Document Sharing for Imaging (XDS-
I) IHE profile (Integrating the Healthcare Enterprise) [2].
In order to share and transfer DICOM data set, this XDS-I
integration profile allows two possible protocols that are (1)
a regular DICOM C-STORE or (2) an HTTP-based STOW
request.

A major problem when using DICOM C-STORE is that
it is very inefficient to transfer a large amount of DICOM
objects. For example, let us consider a functional MRI data
set that consists of 50,000 slices/DICOM objects for a size
of 400 M B. The transfer of such a data set using C-STORE
messages may take several hours over a DSL connection.
One reason explaining such a high delay is the necessary
negotiation performed prior to transferring DICOM objects.
In this paper, we investigate and evaluate the transfer of
DICOM data set of various size using C-STORE and STOW.
Experimental results show that an HTTP-based request can
divide by about 50 the transfer time when compared to a
regular DICOM C-STORE.

The remainder of this paper is organized as follows.
Section II describes the general XDS/XDS-I framework for
exchanging clinical document and images between clinical
organizations. Section III provides details about the C-
STORE and STOW protocols and discuss their respective
advantages. Experimental results are provided in Section IV
and the paper concludes in Section V.

II. CROSS-ENTERPRISES CLINICAL IMAGES
SHARING

As a first step towards sharing clinical records between
clinical organizations, the Cross Enterprise Document Shar-
ing (XDS) IHE profile (Integrating the Healthcare Enterprise)
was defined. Using the XDS profile, a document is shared
by, first, uploading the file to a repository and, second,
indexing and storing the metadata in a registry. Clinicians
can subsequently query the registry to retrieve documents
from the repository. However, this approach is inefficient to
handle clinical images because of the impractical duplication
of images in the repository [3]. To address that problem,
the so-called Cross-enterprise Document Sharing for Imaging
(XDS-I and XDS-1.b) was proposed [2]. The idea followed
by XDS-I is to hold searchable metadata in the registry, itself
linking to a so-called manifest stored in the repository. That

1350

(2) Register
manifest

XDS Registry

XDS repository

(4) Retrieve
Manifest

(3) query registry

Image consumer

(5) WADQO retrieve or L
Clinical encounter

DICOM C-STORE

Fig. 1. Architecture overview of the Cross-Enterprise Document Sharing
for Imaging (XDS-I)

manifest avoids the unnecessary duplication of images by
providing the original location of images (see Figure 1).
The manifest corresponds to a Key Object Selection [4]
document providing the list of DICOM objects and their
respective location. The XDS-I integration profile allows
either a DICOM connection to a local Picture Archiving
and Communications Systems (PACS) or an HTTP-based
DICOM request (See Figure 1). We discuss both protocols
in the sequel.

a) DICOM connection: According to the IHE XDS-
I profile, image retrieval can be performed using regular
DICOM transaction such as DICOM C-STORE. A major
disadvantage of a DICOM connection is that it requires (a)
a fixed and public IP address, (b) an Application Entity (AE)
Title and (c) a port number [4]. This constitutes a significant
issue because the IP of the servers are often dynamic and
servers are not visible outside the hospital network. Note
that a usual solution to address above mentioned problems
is to deploy a specific Virtual Private Network (VPN) that
provides a secure communication between hospitals. These
VPN’s are unfortunately difficult to set up, slow and do not
constitute viable solutions.

b) HTTP-based WADO or STOW requests: Alter-
natively, the THE XDS-I proposes to employ HTTP-based
requests such as WADO. Such a solution is especially sup-
ported by the recent development of the Cross-Community
Access for Imaging (XCA-I) profile [5]. This XCA-I profile
aims at sharing and accessing imaging documents across
multiple hospital/enterprises. This profile is especially fo-
cusing on sharing imaging documents using web service and
addresses issues related to regular DICOM connections. As a
first step towards a full implementation of the XCA-I profile
that relies on a Web Services-based WADO, we focus and
investigate performances of a HTTP-based DICOM RESTful
implementation in a push scenario.

Note that the manifest stored in the XDS-I repository
contains only the DICOM AE Title of the PACS but does
not specify the IP address and port. As a result, DICOM
transactions such as C-STORE cannot be easily performed
across multiple hospitals/enterprises.

ITIT. DICOM OBJECTS TRANSFER METHODS

In this section, we provide details about two DICOM
protocols employed for transferring DICOM objects. These

\ Store Request Image 1

() < NEGOTIATION > ()
[[
3

C-Store
SCP

I I I
C-Store < Store Response
Sscu)

| Store Request Image N

< : Store Response : :
AN /U

J
Y SE—
STOW | HTTP POST Request Image 1-N > STOW
scu HTTP POST Response | SCp
— —
M)
WADO HTTP GET Request | | wapo
SCcP \ HTTP GET Response Image 1-N SCu
— ——
Fig. 2. General illustration of DICOM objects transfer scenarios from A

to B.

include (1) the regular DICOM transfer protocol (C-STORE
and C-MOVE) and (2) the HTTP-based DICOM requests.

A. Transfer using regular DICOM messages

We now present the DICOM C-STORE and C-MOVE.
The C-STORE service is used to store a DICOM object on
a so-called Application Entity (AE). This AE is employed
to identify a DICOM node or server on a network. The
Service Class User (SCU) initiating the transfer sends a C-
STORE message followed by the object to be stored. Next,
the Service Class Provider (SCP) stores the object and sends
a C-STORE response. Only one object can be transferred per
C-STORE message (see Figure 2). The C-MOVE message is
used to pull or retrieve DICOM objects. More specifically,
the SCU sends a request to the SCP to retrieve DICOM
objects. Those objects are locally retrieved ' by the SCP and
subsequently stored by a C-STORE message on the SCU.
Finally, a C-MOVE response is sent at the end of the transfer.

B. Transfer using HTTP-based DICOM requests

We now present the HTTP-based requests DICOM-STOW
and DICOM-WADO. STore Over the Web (STOW) is a
DICOM protocol that sends or posts DICOM objects using
the HTTP protocol [6]. In order to send DICOM objects,
HTTP POST requests are performed. The body of the request
consists of a multipart/related content with one DICOM
binary object per part [7]. Upon completion of the reception,
an HTTP response to POST is sent back. This response
consists of the HTTP status and contains an XML body
listing received and missing objects and potential failure
reasons (see Figure 2). Web Access to DICOM persistent
Objects (WADO) is a DICOM protocol used to get or

IDICOM files may be locally stored on the SCP in an SQL database,
and thus locally retrieved using SQL queries.

1351

retrieve DICOM objects [8]. Similarly to DICOM STOW,
in order to retrieve a DICOM object, an HTTP GET request
is performed. The objects can be retrieved by study, series
or instance. To define which objects should be retrieved,
the Unique IDentifier (UID) of the object is employed and
specified in the URL of the GET request. As a response,
the WADO server sends an HTTP response with a multi-
part/related content type, where each part of the multipart is
a DICOM binary object (see Figure 2).

IV. EXPERIMENTAL RESULTS

In this section, we describe the performed experiments and
present the results. We especially focus on the C-STORE
and STOW protocols. WADO transfer performances will
be evaluated in a future work. However we expect similar
results since the objects are transfered the same way in both
protocols.

A. IMPLEMENTATION DETAILS

We implemented the STOW protocol using the POCO
library [9]. POCO is an open-source C++ library dedicated
to network programming. It features the advantages of being
easy to deploy and being supported by multiple platforms.
Moreover, our implementation is compact and has a limited
number of software dependencies.

To perform a fair comparison, we slightly modified the
implementation of C-STORE in DCMTK [10]. More specif-
ically, C-STORE initiates the transfer by negotiating an
association. For that negotiation, a presentation context is
constructed by parsing the DICOM objects to determine the
Service-Object Pair (SOP) classes and the transfer syntax
that shall be employed. However, this parsing constitutes
a time consuming operation and is not done when sending
images using DICOM STOW. We therefore modified the C-
STORE implementation of DCMTK to provide SOP classes
and transfer syntax as an input. That implementation was
used with appropriate parameters so that images are not
parsed by the SCP.

B. EXPERIMENTAL SETUP

We performed two experiments to compare the transfer
performances of the DICOM C-STORE with the DICOM
STOW protocols. For this evaluation, we employed a net-
work with a transfer speed of 100 Mbit/s. DICOM ob-
jects were transferred between two workstations using (1) a
STOW request and (2) a DICOM C-STORE service. For each
of these transfer methods, timers are inserted at the client side
application. In the case of a STOW-based transfer, the timer
is started at the beginning of the request and stopped when
the response is received. In the case of a regular C-STORE-
based transfer, the timer is started before the association
negotiation and stopped when the response is received. Both
experiments especially focus on evaluating the efficiency of
the protocols when transferring large amounts of DICOM
objects. As a first step, we evaluated the performances of
both protocols using typical data sets. In a second step, we
especially focus on the transfer of a functional MRI data set

Type of DI- | Size of DI- | Number of | Total size
COM object | COM objects | DICOM
object

Compressed | 98.6 kB 889 83.7T M B
CT-scan
Un- 514.7 kB 889 446.9 M B
compressed
CT-scan
DICOM- 1.1 GB 1 1.1 GB
MPEG scan
MRI-scan 6.9 kB 55,890 377 M B

TABLE I

PROPERTIES OF EACH DICOM DATA SET

that consists of a large number of DICOM objects (55,890
objects).

Experiment 1: transferring typical data sets: The first
experiment evaluates the performance of each transfer pro-
tocol using multiple types of data sets. For each transfer
type, the following data sets were used: (1) a compressed
CT scan, (2) an uncompressed CT scan, (3) a DICOM data
set embedding an MPEG video, and (4) a functional MRI
scan. Note that the compressed and uncompressed volumes
correspond to the same original volume. An important aspect
of each of these data sets is that they consist of a varying
number of files/objects and thus a varying number of ac-
knowledgements. Table I summarizes the properties of each
data set.

These data sets are of interest for the following reasons:

1) un-compressed CT scan: to evaluate the transfer rate
of a typical DICOM data set,

2) compressed CT scan: to evaluate the influence DICOM
object sizes.

3) DICOM MPEG: to evaluate the transfer rate of a small
number of large DICOM objects,

4) functional MRI: to evaluate the transfer rate of a large
number of small DICOM objects,

Experiment 2: transferring functional MRI data sets of
varying size: The second experiment investigates the transfer
of functional MRI data sets which consist of a varying
number of DICOM objects. More specifically, increasing the
number of DICOM objects affects the transfer efficiency be-
cause it involves a higher number of DICOM acknowledge-
ment (see Figure 2). Therefore, we created 5 sub data sets
using the original functional MRI data set, which consists of
55,890 DICOM objects, by splitting in 5 equal parts. Each
of these part/data sets consists of 11,178, 22,356, 33,534,
44,712 and 55,890 objects, respectively. The transfer was
performed using C-STORE DICOM messages and STOW
request.

C. RESULTS AND DISCUSSION

We now discuss the results obtained in the two previously
described experiments.
Experiment 1: transferring typical data sets: Figure 3
illustrates the transfer time of each data set using C-STORE
and STOW. From the figure it can be noted that the transfer

1352

800

C-STORE |

700 L STOW === i

600 B

500 - B

400 - B

300 =

200 - =

© L +
0

CT compressed CT uncompressed DICOM MPEG

Transfer time (s)

Fig. 3. Comparison of transfer speed for different types of DICOM objects

performances of STOW are better than C-STORE. On aver-
age, STOW’s transfer time is 35% lower than C-STORE’s.
The improvement is higher for the two CT data sets (mean
of 51%) than for the single DICOM-MPEG scan (4%). A
larger difference is observed for the compressed data set
(73%) set than for the un-compressed one (28%). These
differences can be explained by the fact that DCMTK’s C-
STORE waits for an acknowledgment for each transferred
object whereas STOW only sends one response at the end of
the transfer. The small improvement for the DICOM-MPEG
scan is due to the fact that the negotiation time is low with
respect to transfer time (data set of 1.1GB). The greater
improvement for the compressed CT data set when compared
to the un-compressed one can be explained by the fact that
the negotiation time is larger with respect to transfer time
when files are smaller.

Experiment 2: transferring functional MRI data sets of
varying size: Figure 4 illustrates the transfer time of the MRI
data set as a function of the number of files transferred. From
the figure it can be noted that STOW is significantly faster
than C-STORE (about 50 times on average). We studied the
relative and the absolute improvement of STOW as compared
to C-STORE. The relative improvement is defined as the
difference between both transfer time divided by C-STORE’s
transfer time. The absolute improvement is the difference (in
seconds) of both transfer times. The relative improvement
does not depend on the number of files transferred (on
average, STOW’s transfer time is 98 + 0.5% lower than C-
STORE’s). However the absolute improvement is linear as a

funﬁ%leos% (r)gs{lliltrsnlggﬁ %feﬁr%fosdeled by a simple formula:

tc—srore = N.(ty +t,)
tstow = tr + N.tf

with IV the number of files transferred, ¢ the transfer time
of one file, ¢,, the C-STORE response time and ¢,. the HTTP
request/response time.

In our experiments, ¢, is negligible with respect to N.t;.
Thus, the ratio ¢t /(t¢+t,) between transfer times of STOW
and C-STORE is constant when the number of files increases.
The absolute time difference is linear as a function of

100000 ¢ T T T T
E C-STORE based transfer
STOW-based transfer

10000 £ 4

1000 4

Transfer time (s)

100 4

10 1 1 1 1 1 1 1 1 1
10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000
Number of DICOM objects

Fig. 4. Time of transfer

the number of files. When larger files are transferred, ¢,
is negligible with respect to ty. Thus, the ratio between
toc_storr and tgrow is close to 1. As a result, using the
STOW protocol is especially attractive for data set containing
a very large number of small DICOM objects (e.g. functional
MRI data sets).

V. CONCLUSIONS

In this paper, we compared the DICOM C-STORE to the
DICOM STOW protocol. Experiments have revealed that the
STOW protocol is faster than C-STORE, especially when
transferring a large number of DICOM objects. In practice,
the transfer time can be divided by up to 50. While C-STORE
has proven its reliability over the past decades, the HTTP-
based protocol constitutes a very attractive solution because
of its simplicity, ubiquity and its transparent deployment.

REFERENCES

[1] B. Gibaud, G. Kassel, M. Dojat, B. Batrancourt, F. Michel, A. Gaig-
nard, and J. Montagnat, “Neurolog: sharing neuroimaging data using
an ontology-based federated approach,” in AMIA Annual Symposium
Proceedings, vol. 2011, p. 472, American Medical Informatics Asso-
ciation, 2011.

[2] IHE International, “Cross-enterprise Document Sharing for Imaging
(XDS-1.b) Integration Profile.” Integrating the Healthcare Enterprise
(IHE), Technical Framework Supplement, March 2009.

[3] W. R. Saywell, “After picture archiving and communication systems:
information technology in radiology,” The British Journal of Radi-
ology, vol. 83, pp. 365-368, May 2010. PMID: 20223902 PMCID:
PMC34735717.

[4] O. S. Pianykh, Digital Imaging and Communications in Medicine
(DICOM), A Practical Introduction and Survival Guide. 2012.

[5] IHE International, “Cross-Community Access for Imaging (XCA-I).”
Integrating the Healthcare Enterprise (IHE), Technical Framework
Supplement, May 2011.

[6] National Electrical Manufacturers Association (NEMA), Digital Imag-
ing and Communications in Medicine (DICOM) Standard, “Supple-
ment 163: STore Over the Web by REpresentations State Transfer
(REST) Services (STOW-RS),” August 2013.

[7] National Electrical Manufacturers Association (NEMA), Digital Imag-
ing and Communications in Medicine (DICOM) Standard, “Part 10:
Media Storage and File Format for Media Interchange,” 2011.

[8] National Electrical Manufacturers Association (NEMA), Digital Imag-
ing and Communications in Medicine (DICOM) Standard, “Supple-
ment 161: Web Access to DICOM Persistent Objects by RESTful
Services (WADO-RS),” February 2013.

[9] “POCO - The C++ Portable Components.” http://pocoproject.org/.

[10] OFFIS, “DCMTK - DICOM toolkit.” http://dicom.offis.de/dcmtk,
2011.

1353

