
  

 

Abstract—In this paper we introduce a coarse-to-fine 

arrhythmia classification technique that can be used for 

efficient processing of large Electrocardiogram (ECG) records. 

This technique reduces time-complexity of arrhythmia 

classification by reducing size of the beats as well as by 

quantizing the number of beats using Multi-Section Vector 

Quantization (MSVQ) without compromising on the accuracy 

of the classification. The proposed solution is tested on MIT-

BIH arrhythmia database. This work achieves a highest 

computational speed-up factor of 2.2:1 in comparison with 

standard arrhythmia classification technique with marginal loss 

(<1%) in classification accuracy. The clinical application of this 

technique enhances physician’s throughput by factor of 2x 

while processing large ECG records from Holter system. 

I. INTRODUCTION 

More than four million Americans, mostly over age sixty, 
are suffering from various kinds of arrhythmias [1] that cause 
discomfort or even sudden cardiac death (SCD) [1]. Fast and 
accurate classification of large set of Electrocardiogram 
(ECG) beats containing both normal and arrhythmic 
categories is still a challenging task for the state-of-the art 
classification algorithms and considered to have high 
business value of worth (more than 16 billion USD) in health 
care eco-system. In a real-time scenario, a typical cardiac 
recommendation system has to handle various kinds of 
arrhythmias and the total number of such abnormal varieties 
might sum up to 96 different categories [2]. Theoretically, 
each of these arrhythmia classes may contain nearly 28,800 
beats, if 48 hours of single-channel ambulatory recording is 
considered, assuming an average heart-rate of about 60 
beats-per-minute (BPM). However, the number of beats can 
be more if a patient’s heart rate is higher than assumed BPM. 
The size of the database can be further increased if data is 
accumulated from multiple channels (up to 12). To classify 
the ECG beats, the distance-based measures are preferred 
over complex machine learning-based method as they do not 
have to undergo feature extraction step followed by training 
of those features to yield class models. Distance metrics such 
as Euclidean, and Mahalanobis are used to calculate the 
proximity between an unknown beat (X) and the beats 
present in the databases. The class label, which corresponds 
to the minimum distance, would be the final verdict, which 
means, one has to compare the unknown beat against all the 
existing beats present in the entire database. This is known as 
one-against-all scheme and it involves huge computational 
burden for the Minimum-distance classifier. This results in 
delays during a real-time environment, where an unknown 
incoming ECG stream containing multiple beats needs to be 
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classified fast and the recommendation to be passed on to a 
doctor’s desk for his final diagnosis.  

In this contribution, we propose a coarse-to-fine [3] 
classification paradigm, which aims to solve the problem of 
computational burden without sacrificing the classification 
accuracy. This work has two major contributions: One is to 
reduce the size of the beats and, second is to quantize the 
number of beats using Multi-Section Vector Quantization 
(MSVQ) [4]. This work further proposes the combination of 
these two approaches that leads to reduction in computation 
time compared to individual time complexities of these 
methods. The experiments have been carried out with MIT-
BIH Arrhythmia database [5] containing 5 different pattern 
classes showing maximum speed-up factor of 2.2:1 with 
negligible degradation of classification accuracy. 

II. COARSE-TO-FINE CLASSIFICATION TECHNIQUES  

Any coarse-to-fine classification strategy is normally 

composed of a coarse module followed by one or more fine 

classification stage(s). The idea is to coarsely classify and 

choose the classes, which could be the potential winner 

candidates for the later stage(s). Viewed in another manner, 

the classes, which are less probable to the correct class label, 

are pruned out. This saves huge computation at later stage, as 

the unknown beat does not have to be compared against 

beats from all the class labels. In Fig. 1, we depict a typical 

coarse-to-fine (two levels) classification paradigm.  

 

Figure. 1 Generic coarse-to-fine classification paradigm 

III. COARSE CLASSIFICATION BY REDUCING THE BEAT 

LENGTH USING DECIMATION – (APPROACH – 1) 

To reduce the length of an incoming ECG beat, 
decimation based approach has been adopted. There are 
many existing decimation approaches [6] available such as; 
i) Uniform sub-sampling i.e., picking one-out-of D samples 
ii) Random sub-sampling, iii) Segmental central value (either 
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mean or median), iv) Quantization or symbolic 
representation. Any of these above can be adopted to reduce 
the dimension of an ECG beat and this reduced dimensional 
ECG beat can be used in the coarse classification phase. 
Note that in this work, we have used uniform decimation 
technique to avoid any extra computational cost. Various 
decimation processes are described pictorially in Figure 2. It 
is worth mentioning here that, the reference beats have 
already been prepared for the experiments using a set of 
standard procedures as described in [7].  

Figure. 2 Various decimation methods 

A. Coarse classification phase 

In this phase, an unknown incoming beat is first decimated 

using uniform sub-sampling.  Similarly, all reference beats 

present in the entire corpus are decimated using same 

technique. For example, if we choose decimation factor (D) 

as 40, hence for and ECG beat with length (L) of 351 the 

reduced beat size (L’) would be 9. After decimation, the one-

against-all based comparison (i.e., minimum distance using 

Euclidean norm) is done between the decimated incoming 

unknown beat and decimated reference beats in the database. 

From the comparison output top T candidate classes are 

retained while rest of the classes and their corresponding 

databases are pruned out. The idea here is to choose 

potential pattern classes through a coarse classification and 

forward the candidate classes to the next stages for accurate 

classification. In this work, we experimented with T = 2 or 3 

i.e., 3 or 2 classes are pruned at the time of coarse 

classification. 

 

Figure. 3 Complete system for the approach - 1 

B. Fine classification phase 

In the finer classification stage, complete resources (all 
the samples in a beat) have been used for classification 
among the shortlisted classes from the coarse classification 
phase, as the survived classes are more difficult to 
distinguish. The fine classification stage yields the winner 
class label i.e., the class, which shows maximum proximity 
with the unknown beat. The total system is shown in Figure 
3. 

IV. COARSE CLASSIFICATION BY REDUCING NUMBER OF 

BEATS LENGTH USING MSVQ – (APPROACH – 2) 

 The approach - 1 described earlier attempted reducing 
length of a beat in the coarse classification stage. In this part 
of the work, we reduce the number of beats from each 
database at the time of coarse classification. The idea is to 
reduce number of beats significantly using Vector 
Quantization (VQ) [8] algorithm. Normal VQ could quantize 
the vectors but cannot preserve the dynamic information 
within each vector. MSVQ can quantize as well as preserves 
dynamic information of data. MSVQ is no different than 
conventional VQ algorithm but applied in uniformly 
segmented sections in normalized signal or feature vectors 
[4].The idea of using MSVQ is to quantize various sections 
of ECG signal across several beats. MSVQ has been 
successfully used in speech recognition [4] context but not in 
ECG beat classification. Five uniform sections are created to 
accommodate five different waves (P, Q, R, S, and T) that 
are normally present in an ECG beat and VQ is run on these 
sections.  Figure 4 depicts the use of MSVQ for a Normal 
class ECG beat. Note that, after MSVQ operation, the length 
(L) of each ECG beat will be the same (i.e., 351), only the 
number of beats (i.e., M =Total number of beats) will be 
reduced (K= Reduced number of beats after MSVQ 
operation, and K << M). 

Figure. 4  Reduction of reference beats by Multi-Section Vector 

Quantization (MSVQ) 

A. Coarse classification phase 

At the time of blind testing, the unknown beat is sent to 
the pre-quantized databases, which contain reduced number 
of beats. Euclidean distance between unknown beat and each 
of these classes is computed. Top T classes (based on 
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minimum Euclidean distance) have been chosen as candidate 
classes and kept for future finer evaluation. 

B. Fine classification phase 

In a manner similar to that described in sub-section III B, 

fine classification involved comparing the input beat with 

every beat within the identified T classes (see Figure 5 for 

illustration). 

V. COMBINATION OF APPROACHES 1 AND 2 

We combined approach 1 and 2 so that it reduces the time 

complexity of coarse level classification. The unknown 

incoming beat, however needs to be down-sampled the way 

it was done in approach - 1. Note that in order to combine 

both approaches, all the beats from training databases have 

to be quantized first and then decimated. The comparison at 

coarse level now would be in the reduced domain utilizing 

both the concepts (i.e., reduced beat length and number of 

beats) from approaches 1 and 2. The complete system is 

described through Figure 6. 
 

Figure. 5   Complete system for the approach - 2 

Figure. 6 The combined approach 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

The detailed experimental setup and preparation of beats 

that includes pre-processing, R-peak detection, segmentation 

and normalization for the experiments can be found in [7]. 

The numbers of reference and test beats for four different 

arrhythmia classes and the normal class are shown in Table I 

below. The experimental results are presented from Table II 

to IV. 

TABLE I NUMBER OF BEATS INVOLVED IN TRAINING AND TESTING 

Name of the classes  

No. of 

Reference 

Beats  

No. of 

Test 

Beats  

Normal  1240 8700 

Left bundle branch block (LBBB) 1151 8069 

Right bundle branch block (RBBB) 965 6769 

Premature ventricular contarction (PVC) 450 3167 

Atrial premature contraction (APC) 351 2078 

 

In approach - 1 (Refer Table II), the length of the beat is 

reduced through decimation technique. Decimation factor 

(D) is varied from 20 to 40 with a step of 10. For each 

decimation step, we have also experimented with two types 

of pruned classes (T = 2 and 3). The compression is highest 

with decimation factor 40 and when number of pruned 

classes is 3. In this case, the accuracy, sensitivity and 

Positive Predictive Value (PPV) drops and it is lower 

compared to the conventional (one-against-all) method; 

however the computational complexity is much lower. In 

approach - 2 (Refer Table III), number of quantized vector 

size (K) is varied from 10 to 30 with a step of 10. In this case 

also, we have experimented with different number of pruned 

classes for each step of quantization. The highest 

compression is achieved, with vector size (K) = 10 and 

number of pruned classes as 3. The results of this 

combination showed very minor degradation in classification 

accuracy compared to the conventional method.  In third 

proposition (Refer Table IV), which is a combination of 

approach 1 & 2; the experiment is conducted with D = 40, 

K=10, and T = 2 (i.e., the least resourced system). In this 

case with minor degradation of classification accuracy, we 

achieved the speed-up factor of 2.2 compared to 

conventional method.  Note that, in all these experiments 

True Negative cannot be calculated from confusion matrix 

and hence only two statistical metrics: sensitivity and PPV 

are reported in the results. 

The above mentioned experiments have been carried out 

using MATLAB
®
 tool, and execution time is computed in 

seconds and same is reported in the tables below. Note that, 

the speed-up factor is highly dependent on length of a beat, 

number of beats present in a database, number of pattern 

class and the intrinsic complexity present in the distance 

measure used. The lower these parameters the higher would 

be the speed-up factor. The speed-up factor may not look 

promising in small database such as MIT-BIH; but in larger 

database, where numbers of classes and beats within each 

class are huge, the speed-up factor would increase 

significantly. Hence, we believe the combined approach 

would be better than those of singleton approaches. This 
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paradigm can be used in trainable classifier based systems, 

where a classifier with lower model order can be used in 

coarse classification stage while the higher model order can 

be involved for later stages.  

VII.  CONCLUSIONS 

This paper proposes three different coarse-to-fine 

classification techniques to classify ECG beats for a large 

database. Beat length reduction has been done by uniform 

decimation while number of beats are reduced utilizing 

MSVQ method. The work also combines these two 

techniques and shows 2.2:1 reduction in time-complexity as 

compared to conventional classification method on a public 

database.  
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TABLE II RESULT FOR APPROACH-1 

    
Proposed Method  

(No. of classes survived for competition for 2nd stage is 2)  (T = 2)  

Proposed Method  

(No. of classes survived for competition for 2nd stage is 3)  (T = 3) 

  One-against-all D=40 (L’=9) D =30 (L’=12) D=20 (L’= 12) D = 40  (L’ = 9) D = 30  (L’ = 12) D = 20 (L’ = 12) 

Class 

Label 

Class wise 

accuracy  

Time 

(in sec) 

Class wise 

accuracy  

Time  

(in sec) 

Class wise 

accuracy  

Time 

(in sec) 

Class wise 

accuracy  

Time 

(in sec) 

Class wise 

accuracy  

Time 

(in sec) 

Class wise 

accuracy  

Time  

(in sec) 

Class wise 

accuracy  

Time 

(in sec) 

Normal 96.3539 

15065.6 

96.4478 

7373.7 

95.6434 

7408.6 

96.6488 

7840.5 

96.3673 

10114.5 

96.0321 

10523 

96.622 

10930.3 

LBBB 99.4218 98.8002 99.4507 99.5808 99.3929 99.4652 99.4507 

RBBB 99.8277 99.4659 99.3281 99.6726 99.7071 99.6037 99.7416 

PVC 97.6077 95.841 97.166 97.35 97.166 97.35 97.6445 

APC 95.773 94.557 94.036 95.8888 95.9467 95.3098 95.8888 

Average 

Accuracy 
98.1321   97.6204   97.6367   98.209   97.933   98.063   98.213   

 

  
Proposed Method  

(No. of classes survived for competition for 2nd stage is 2) (T = 2) 

Proposed Method  

(No. of classes survived for competition for 2nd stage is 3) (T = 3) 

One-against-all D = 40  (L’ = 9) D = 30  (L’ = 12) D = 20 (L’ = 12) D = 40  (L’ = 9) D = 30  (L’ = 12) D = 20 (L’ = 12) 

Sensitivity PPV Sensitivity PPV Sensitivity PPV Sensitivity PPV Sensitivity PPV Sensitivity PPV Sensitivity PPV 

97.7968 97.889 97.0224 97.15 97.1248 97.264 97.8282 97.963 97.716 97.709 97.5522 97.682 97.8695 98.009 

TABLE III RESULT FOR APPROACH-2  

    
Proposed Method 

(No. of classes survived for competition for 2nd stage is 2)  (T = 2)  

Proposed Method 

(No. of classes survived for competition for 2nd stage is 3) (T = 3) 

  One-against-all K = 10 K = 20 K = 30 K = 10 K = 20 K = 30 

Class 

Label 

Class wise 

accuracy  

Time 

(in sec) 

Class wise 

accuracy  

Time  

(in sec) 

Class wise 

accuracy  

Time 

(in sec) 

Class wise 

accuracy  

Time 

(in sec) 

Class wise 

accuracy  

Time 

(in sec) 

Class wise 

accuracy  

Time  

(in sec) 

Class wise 

accuracy  

Time 

(in sec) 

LBBB 99.4218 

15065.6 

99.2917 

7076.3 

99.2194 

7126.6 

99.1327 

7136 

99.4652 

10207.8 

99.3929 

10158.6 

99.3206 

10287.4 
RBBB 99.8277 99.8794 99.8622 99.8449 99.845 99.8277 99.8278 

PVC 97.6077 96.0618 97.2764 97.1659 96.7979 97.3132 97.35 

APC 95.773 95.8309 95.7151 95.4256 95.773 95.71511 95.6572 

Average 

Accuracy 
98.1321 

 
97.929 

 
97.9371 

 
98.01 

 
98.108 

 
98.14 

 
98.161 

 
 

  
Proposed Method 

(No. of classes survived for competition for 2nd stage is 2) (T = 2)  

Proposed Method  

(No. of classes survived for competition for 2nd stage is 3) (T = 3) 

One-against-all K = 10 K = 20 K = 30 K = 10 K = 20 K = 30 

Sensitivity PPV Sensitivity PPV Sensitivity PPV Sensitivity PPV Sensitivity PPV Sensitivity PPV Sensitivity PPV 

97.7968 97.8889 97.4755 97.44 97.6157 97.3819 97.6034 97.7539 97.6792 97.746 97.7688 97.828 97.7501 97.9083 

TABLE IV RESULT FOR COMBINED APPROACH 

 
One-against-all Proposed Combined System Speed up 

Factor 

(A/B) 
Class Label 

Class wise 

accuracy 

Time 

(in sec) (A) 

Class wise 

accuracy 

Time 

(in sec) (B) 

Normal 96.3539 

15065.6 

95.8043 

6875.3 2.2 

LBBB 99.4218 98.8436 

  RBBB 99.8277 99.7416 

 PVC 97.6077 96.2827 

APC 95.773 94.3254 

Average Accuracy 98.1321 
 

97.5351 
   

One-against-all 
Combined Method 

(D = 40 (L’), K = 10, T = 2) 

Sensitivity PPV Sensitivity PPV 

97.7968 97.8889 97.8622 98.0334 
 

 

Uniform sub-sampling with D = 40 (L’ = 9), MSVQ code-vector size (K) = 10, Number of Survived class for competition (T) = 2 
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