
  

 

Abstract— Crackles are adventitious and explosive 

respiratory sounds that can be classified as fine or coarse. 

These sounds are usually associated with cardiopulmonary 

diseases such as the chronic obstructive pulmonary disease. In 

this work seven different features were tested with the objective 

to identify the best subset of features that allows a robust 

detection of coarse crackles. Some of the features used in this 

study are new, namely those based on the local entropy, on the 

Teager energy and on the residual fit of a Generalized 

Autoregressive Conditional Heteroskedasticity process. 

The best features as a function of the number of features 

used in classification were identified having into account the 

Matthews correlation coefficient. The best individual feature 

was based on the local entropy. A significant improvement in 

the performance was obtained by using the feature based on 

local entropy and the feature based on the wavelet packed 

stationary transform – no stationary transform. The addition of 

more features only allows a smaller improvement. 

 

I. INTRODUCTION 

 The analysis of the respiratory sounds is a valuable 

diagnostic tool for the detection and follow-up of respiratory 

diseases such as chronic obstructive pulmonary disease 

(COPD). The respiratory sounds can be classified as breath 

sounds, abnormal breath sounds and adventitious sounds [1]. 

Adventitious sounds refer to additional respiratory sounds 

superimposed on breath sounds. These sounds include 

wheezes (continuous sounds), stridors, squawks and crackles 

(discontinuous sounds). Crackles are short explosive sounds 

that seem to result from an abrupt opening or closing of the 

airways[2]. Crackles can usually be classified based on their 

total duration (2CD) as fine (<10 ms) or coarse (>10 ms) [3]. 

These sounds are associated with cardiopulmonary diseases 

and typically present a very characteristic waveform. The 

waveform of the crackle generally begins with a width 

deflection, followed by deflections with greater amplitude 

[2]. Several methods have been proposed for automatic 

detection of crackles: based on wavelets [4][5],  on empirical 

mode decomposition method with Katz fractal dimension 

filter [6], on adaptive computing methods [7] and on 

autoregressive models [8].  

 The objective of this study is to identify the best features 

that allow the robust detection of crackles. In the future, the 

identified features will be used to monitor the presence of 

crackles in patients with COPD in different acquisition 
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environments, namely in a telemonitoring system. This work 

was done under the FP7 European Project WELCOME [9] 

that aims to provide continuous monitoring for an integrated 

care to COPD patients with comorbidities. Some of the 

features used in this study are new, such as a feature based 

on the local entropy, a feature based on the Teager energy 

and a feature based on the Generalized Autoregressive 

Conditional Heteroskedasticity process. The performance of 

the feature(s) to discriminate segments of respiratory sounds 

with coarse crackles was studied by having into account the 

Matthews correlation coefficient [10].  The best combination 

of features was found by testing the performance of all the 

possible combination of features. 

II. THEORY 

A. Teager energy operator 

The Teager energy operator is a non-linear operator that 
is frequently used in signal and image processing 
applications, such as in the demodulation of AM-FM signals. 
In the continuous case the Teager Energy Operator,  (.), [11] 
for real signals x(t) is defined as 
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The discrete version is given by  

 (    )                     , ( 2 ) 

with      and     . 

B. WPST–NST 

Bahoura and Lu [5] proposed a filter scheme based on the 
wavelet packed transform to separate the crackles from 
vesicular sounds. The proposed filter, the wavelet packed 
stationary transform – no stationary transform (WPST–NST), 
is a double thresholding non iterative method. In the 
formulation of the WPST–NST filter two assumptions are 
made: 1) the wavelet coefficients related with the crackles 
have larger coefficients when compared with the coefficients 
related with the vesicular sound, 2) the background related 
coefficients decrease to zero with the increase of scale.  The 
first threshold is computed as  
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where   
 
 is the standard deviation of coefficients 

corresponding to the     subband of the level   and 

       . The second threshold is computed as 
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where   
 
    is the wavelet coefficient   of the     

subband of the level  ,   the signal length and     . The 

wavelet coefficients of the non-stationary part of the signal 

are the ones that satisfy the condition  
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C. Fractal dimension 

  The fraction dimension (or capacity dimension of a fractal 

or Hausdorff dimension) is a measurement of the complexity 

of a given waveform. This measurement can be calculated 

by   
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where   is the total length of the curve [12] and   the 

diameter of the curve. To avoid the dependence on the 

particular units of measure (in the discrete case) Katz [12] 

proposes a modification of (7). A study done by 

Raghavendra and Dutt [13] shows that the performance of 

the method proposed by Katz in the estimation of the fractal 

dimension of waveforms is poor. A more robust method was 

proposed by Higuchi [14]. Let                    be a time 

series composed by   points. The first step to calculate the 

Higuchi FD is to construct u new time series,   
 , as 
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with          , and             , where    and u are 

integers indicating the initial time value and the discrete time 

interval between points, respectively. The      is the 

maximum value of u and     is the integer part of  . Then 

for each time series   
  , the average length,      , is 

computed as 

      
∑ |            (   )  |(   )

⌊(   )  ⌋
   

⌊
   

 
⌋  

  
( 9 ) 

After that, the length of the time series for the time interval 

 ,     , is computed as 
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( 10 ) 

Finally the FD Higuchi corresponds to slope of the curve 

  (    ) versus   (   ) estimated by a linear least squares 

fitting. 
 

D. Empirical Mode Decomposition 

 The EMD method was developed by Huang et al. [15] and 

allows to adaptively decompose a (non-stationary) signal 

into a finite sum of   curves called intrinsic mode functions 

(IMF), i.e.,  

     ∑        
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where    denotes the   intrinsic  mode function and    the 

residual. The IMF has two main characteristics: 1) the 

number of extremes and the number of zero-crossing must 

differ by at most one, 2) the mean value of the envelope 

defined by the local maxima and the envelope defined by the 

local minima is zero at every point. 

E. Entropy 

 The information entropy,  , is a measurement of the 

disorder of a system. A discrete random variable   with   

possibles outcomes              and associated 

probabilities   (  )  (  )    (  )  has an entropy equal 

to [16] 
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The entropy of a signal quantized into   levels is given by 

[16] 
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 where    is the number of times that the     level appears 

in the signal and   is the size of the signal. 

 

F. Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) Process 

 Time series models can be used to try to model the 
respiratory sounds. By definition, a process              is 
said to be an GARCH(p,q) if it is stationary and if [17] 
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and           for         ,                  

and if    and             are independent for all  .     

stands for independent and identical distributed and  (   ) 

refers to a normal distribution with zero mean and variance 

equal to 1. 

III. MATERIAL AND METHODS 

A. Data 

 In this study two datasets available on-line [18] (first 

channel of the repository “Crackle (a)” and the repository 

“Crackle (c)”) of respiratory sounds containing crackles 

were used. The two datasets (~10 seconds each) with a 

sampling rate of 11025 Hz were subdivided, with an overlap 

factor of 75%, into segments with a length of 2048. The 

segments were manually classified as containing coarse 

crackles or not containing coarse crackles. This is the 

expected type of crackles to be found in patients with COPD 

[2]. 

B. Data processing 

 Different processing algorithms were applied to each 

segment of data. The first one was the Teager energy 

operator ( ). The local entropy (    ), i.e., the information 
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entropy (see (13)) , was calculated for the values of the 

signal blocks with length of 131 points centered in each 

point. A global quantization of the data into 6 levels was 

applied before the calculation of the   . The third one was 

the local Higuchi FD of non-stationary signal part of the 

WPNST-ST filter (FD-NST). The Higuchi FD was 

calculated for the values of the signal blocks with a length of 

101 points centered in each point. For the WPNST-ST filter 

we used a Daubechies-8 wavelet for a 5th level 

decomposition tree. The fourth and the fifth processing 

algorithms were, respectively, the local Higuchi FD 

(      ) and the Teager energy (     ) of the 

signal reconstructed using only the first   IMFs. The number 

of IMFs ,    were selected using the criterion proposed by 

Hadjileontiadis [6]: 
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where   
  and   

   represent the first and second derivate of 

   with respect to  , p=0.05, and      denotes the expected 

value of  . Finally, the local Higuchi FD of the fit residues 

of best GARCH model (FD-GARCH) that fit the data was 

also calculated. The order of the model was chosen using the 

Akaike Information Criterion over a set of 8 candidates. 

Prior to the estimation of the GARCH model a median filter 

was applied to the data.  

C. Features 

 For each segment 7 features were computed. We began by 

subdividing the segment of sound, with an overlap factor of 

50%, into      =7 sub-segments with 512 of length. For 

each sub-segment of a given segment seg,     
    (         

           )  the most appropriated quartile (the lower (  ) 

or the upper (  )) of the result of the different processing 

algorithms (including the amplitude, Amp) was computed. 

The features computed for each segment of sound 

correspond to the appropriated extreme value (maximum 

(   ) or minimum (   ) value) of the set composed of the 

quartiles values of the sub-segments. In summary the 7 

features computed for the segment seg were: 
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D. Performance criteria 

 The Matthews correlation coefficient (MCC), measured 

after classifying the data using the Logistic Regression 

classifier [19], was used to assert the capacity of the 

different features (or combination of features) to detect 

segments with coarse crackles. This coefficient is calculated 

by  
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where TP , TN, FP and FN correspond , respectively, to the 

true positives, true negatives, false positives and false 

negatives. 

 Due to the reduced size of the datasets, a leave-one-out 

cross-validation approach was used to assert the 

performance of the classification. In order to identify the 

best subset of features, all possible combinations were 

tested. 

IV. RESULTS 

 Fig. 1 and Fig. 2 show examples of segments of 

respiratory sounds used in this study with and without coarse 

crackles, respectively. Fig. 3 presents a representative 

example of the result of the application of the different 

processing algorithms to a segment of sound. Table 1 

presents the feature(s) that obtain(s) the higher value of the 

MCC as a function of the number of features (subset size) 

used in the classification. 

 

Figure 1. Two examples of segments of the respiratory sound processed that 

contain coarse crackles. 

 
Figure 2. Two examples of segments of the respiratory sound processed 

without crackles.  
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V. DISCUSSION AND CONCLUSION  

 In this study we try to identify the best subset of features 

that allows a robust detection of coarse crackles. Although 

the maximum amplitude of the crackles tends to be higher 

than the maximum amplitude of the breath sounds, we could 

find several situations where this condition is not satisfied 

(see Fig. 1 and Fig. 2). As we can see in Fig. 3, the different 

processing algorithms provide by themselves some ability to 

discriminate between crackles and breath sounds.  

The    tends to be higher in the presence of crackles and as 

we expected the values of the FD-NST and the FD-EMD are 

lower in this region. Please note that the results presented in 

[6] use Katz FD instead of the Higuchi FD. In that case we 

expect higher values for the FD-NST and the FD-EMD in 

the presence of crackles. GARCH models allow to model 

stationary signals with non-constant conditional variance. In 

the presence of breath sounds the fit residues of the GARCH 

model tends to be lower when compared with the fit residues 

in presence of coarse crackles. As we can see in Fig. 3 the 

FD-GARCH is lower in the region with the crackle. In the 

same figure we can also notice that Teager energy ( ) and  -

EMD have higher values in the presence of crackles.  

To improve the robustness against outliers and improve the 

performance of the detection of crackles, we subdivided the 

segment and we calculated the appropriated quartile for the 

different processing algorithms. The best individual feature 

was the Q3-  . A significant improvement in the 

performance of the classification was obtained by using two 

features (Q3-  , Q1-FD-NST). The addition of more 

features only allows a smaller improvement. When all the 

features were used, the performance of the classification 

slightly decreased. Since the number and size of the datasets 

used in this study was very small, in the near future, under 

the project WELCOME [9], an extensive amount of 

respiratory sounds will be acquired and used to validate 

these results.  

 

 
Figure 3. Example of the result of the different processing algorithms that 

were applied to each segment of sound. The subfigures a,b,c,d,e,f and g 

correspond, respectively, to the amplitude, local entropy, Higutich FD of 

the fit residuals of the GARCH model, Higutich FD of the EMD filter, 
Higutich FD of the non-stationary signal of the WPNST-ST, Teager energy 

and Teager energy of the EMD filter.  

TABLE I.  BEST FEATURES AND THE RESPECTIVE VALUE OF     AS A 

FUNCTION OF THE  NUMBER OF FEATURES USED IN THE CLASSIFICATION. 

Nº of features Best Feature(s)     

1            

2 {                       }      

3 
                           
             

     

4 

                           
           
          

  79 

5 

                   
                  
           } 

     

6 

                         
            
           
                  } 

     

7 All      
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