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Abstract— The vestibulo-ocular reflex (VOR) plays an impor-
tant role in our daily activities by enabling us to fixate on objects
during head movements. Modeling and identification of the
VOR improves our insight into the system behavior and helps in
diagnosing various disorders. However, the switching nature of
eye movements, including the VOR, makes the dynamic analysis
challenging. In this work we are using integration of subspace
and prediction error methods to analyze VOR dynamics. The
performance of the method is evaluated using simulation studies
and experimental data.

I. INTRODUCTION

The Vestibulo-ocular reflex is an involuntary eye move-
ment that serves to stabilize retinal images during head
movements. The reflex consists of slow compensatory eye
movements in the opposite direction to head rotation and
fast re-orienting eye movements usually in the same direction
as the head movement. The switching mechanism between
the slow and fast phases relies on omnipause neurons (OPN)
activities that release firing in burst neurons (BN) during fast
phases only. The switching mechanism can extend the linear
range of the VOR responses [1]. Fig. 1 shows an example
of recorded conjugate eye position and velocity (average of
the left and right eye position) during 1/6 Hz sinusoidal
head rotations in the dark using electro-oculography (EOG).
Sample slow and fast phase segments are marked with red
and blue rectangles.

It is common in the literature to remove the fast phases
from the VOR data and employ envelope approaches to
analyze the reflex dynamics; i.e. replacing the removed data
using interpolation, usually in a velocity record. However,
this ignores the effects of initial conditions due to the
switching at each slow phase segment and therefore biases
analysis of the dynamics [1].

There are two algorithms in the literature to identify
VOR dynamics in the presence of switching. The first one
is the modified extended least squares (MELS) algorithm
[2]. MELS is an iterative algorithm based on a NAR-
MAX (Nonlinear AutoRegressive, MovingAverage eXoge-
nous) parametric modeling that includes the initial conditions
at each slow phase segment as an unknown parameter to
be estimated. In this method, it is assumed that the output
additive noise is Gaussian, white and zero-mean. In the
presence of non-Gaussian noise, which is the case in EOG
recordings [3], the accuracy of the algorithm can be affected.
The second algorithm developed by [4] is called hybrid
extended least squares (HybELS): it is also an iterative
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Fig. 1. VOR in response to sinusoidal head rotation recorded with EOG;
(a) Conjugate eye position and scaled head position (deg); (b) Conjugate
eye velocity and scaled head velocity (deg/sec). Sample slow and fast phase
segments are marked with red and blue rectangles, respectively.

and parametric algorithm that identifies the parameters of
slow/fast segments simultaneously. However, HybELS does
not require estimates of the initial conditions, but rather
relies on state continuity in the transitions between fast and
slow phases. Therefore, when identifying each segment, the
history of the signal from the previous segment is used
instead of estimating initial conditions. The drawback with
this method is that in the presence of noise, replacing the
initial conditions with noisy data introduces biases in the
model identification and the performance of the algorithm is
also affected. The performance of both methods is similar
in identifying VOR slow phases [4]; the HybELS is faster
since there are fewer parameters to estimate. However, poor
convergence in the presence of high noise levels is still a
problem.

In this work, we are using an integration of prediction error
minimization (PEM) [5] with subspace method identification
[6] to find VOR dynamics in the dark. This method is
implemented in the MATLAB identification toolbox (The
MathWorks Inc., Natick, MA, USA) as function ’ssest’ to
find a state space model. The PEM algorithm uses numerical
optimization methods to minimize the cost function defined
as a weighted norm of the prediction error, i.e. the differ-
ence between the measured output and the predicted output
of the model. PEM is applicable to a wide spectrum of
model parameterizations and results in models with excellent
asymptotic properties due to its kinship with maximum
likelihood. However, the PEM algorithm has its own draw-
backs, such as requiring explicit parameterization of the
model or laborious search over surfaces that may have local
minima [5]. Therefore, good initialization of the parameter
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values is crucial. The ssest function employs a non-iterative
subspace approach to initialize the parameter set and then
refines the parameter values with PEM. Subspace methods
are developed to estimate state space models for linear
systems with no a priori knowledge about the system. Such
methods are computationally efficient and can be extended to
identify systems with different types of noise [7]. The ssest
method also allows identification of merged data segments
and estimates the initial conditions for each data segment
either as an independent estimation parameter or as the value
that produces the best least squares fit.

We evaluate here the performance of the ssest method
in identifying VOR dynamics using simulation studies and
compare this method to the previously developed MELS
method [2]. We also apply this method to the identification
of experimentally recorded VOR data in the dark.

The remainder of this paper is organized as follows.
Section II provides a review on model formulation and the
algorithm. Simulation and experimental results are presented
in Section III, followed by a brief discussion in Section IV.

II. METHODS

In this work we focus on identifying the VOR slow
phase dynamics. We assume perfect classification tools are
available to mark slow/fast segments beforehead. Fast phase
dynamics can be identified with the same method.

A. Model Formulation

In our recent works [8], [9], we have introduced a physi-
ologically relevant nonlinear hybrid model for VOR nystag-
mus in the dark. In this model, local nonlinear computations
in brainstem circuits enable the model to replicate target-
distance related behavior of the VOR. The input signal is
head velocity (deg/sec), Hv, sensed by semicircular canals,
and the output is conjugate eye position (deg), E. Here, for
the purpose of evaluating the performance of the identifi-
cation algorithms, we use a linear version of our hybrid
model; i.e. the nonlinear surfaces are replaced with linear
ones. With the linear model, the slow phase conjugate system
is simplified to a linear low pass 1st order system with a
gain, g, and a time constant, T , after the semicircular canals.
The semicircular canals are modeled with 1st order high
pass dynamics [10] as: Tcs

Tcs+1 . Fig. 2 depicts the simplified
model, assumed for representing VOR dynamics. Although
the overall input-output system has second order dynamics,
it is of interest to separate the canal time constant from
that of the conjugate system, because the first is continuous,
while the second is switched. Moreover, assuming 2nd order
dynamics doubles the number of unknown initial conditions
and over parameterizes the problem. Therefore, we will
search for the canal time constant by first filtering the input,
Hv, through a unity gain high pass filter with a variable time
constant, Tc. We constrain the canal time constant search in
the range of 2 to 20sec as reported in experimental studies
[11] in increments of 1 sec. We then use the filtered Hv, now
the canal signal Hc, as the input signal to the identification
problem to estimate g and T of the VOR model. Finally, we

Canals�
Tcs/(Tcs+1)

Linear�
Dynamic�
g/(Ts+1)

Hv Hc E

initial conditions 

Fig. 2. Assumed structure of the slow phase VOR. Hv is head velocity
(deg/sec), Hc is canals signal (spikes/sec) and E is eye position (deg).

compare the goodness of the fit to data for different selected
Tc and accept the value that results in the best fit.

B. State Space Identification
The ssest function estimates continuous or discrete state

space models in the following general form:{
ẋ(t) = Ax(t)+Bu(t)+Ke(t)
y(t) =Cx(t)+Du(t)+ e(t)

(1)

where A,B,C,D and K are state space matrices, u(t) is
the input, y(t) is the output, x(t) is the vector of states and
e(t) is the disturbance. If multiple experiment data sets are
identified using ssest, initial conditions for each experiment
are estimated individually, but common dynamics are forced.

Assuming first order dynamics for the conjugate VOR after
the semicircular canals, i.e. E = g

T s+1 Hc +
T

T s+1 E0 + noise,
where E0 is the initial condition at each slow phase segment,
a state state representation of our model in Fig. 2 is:{

ẋ(t) = −1
T x(t)+ g

T Hc +Ke(t)
E = x(t)

(2)

With this formulation: A = −1
T , B = g

T , C = 1 and D = 0. It
is possible to fix C = 1 and D = 0 for initialization of the
parameters and limit the algorithm to only estimate A, B, K
and the initial conditions.

Slow phase segments of the VOR dataset are merged as
several experiments with different numbers of samples. It
should be noted that the minimum number of samples for
each data segment should be greater than the number of
unknown parameters in the identification problem.

III. RESULTS

We first validate our identification approach on simulated
data to demonstrate its unbiased convergence to true param-
eters and then test it with experimental data.

A. Simulation Results

In this section, simulation results are presented to evaluate
the performance of the state space identification algorithm.
VOR data is obtained from simulation of a linear version
of the VOR hybrid model [9] in Simulink. Knowing the
nominal parameters of system dynamics as well as the
switching instances between fast and slow modes allows
precise evaluation of the identification algorithms . The
nominal values for the slow phase model are T = 5.00 sec
and g =−4.98. The canal time constant is set to Tc = 6 sec.
The model is simulated at 200Hz for 60 sec. Input-output
data is divided into two non-overlapping segments for the
purpose of identification and validation. The first half of
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Fig. 3. Simulated input-output data used for identification.

data is used to identify the dynamics and the second half
is used for cross validation of the identified dynamics to
unseen data. ’Infinite step’ prediction is used to compute
the model prediction for input signals given the switching
instances. The quality of the model prediction (ŷ) fit to data
(y) is evaluated by computing the variance accounted for as

%VAF =

(
1− var(y− ŷ)

var(y)

)
×100 (3)

where var(.) is the variance of the signal. In the simulation
studies we present %VAF between model prediction and
noiseless output, even when there is additive output noise.

In clinical tests it is very common to use low frequency
sinusoidal head rotation to test the VOR. It should be
noted that although a low frequency sinusoidal input seems
insufficient to be a persistently exciting input for dynamic
identification, here, the switching mechanism increases the
effective bandwidth of the input due to new random initial
conditions at every switching instance. It is clear that higher
bandwidth input signals, result in more accurate identifica-
tion of the dynamics. Therefore, in order to be consistent
with clinical test protocols, in this study we use a sinusoidal
rotation at 1/6 Hz with 150 deg/sec peak velocity as the input
signal, Hv. Fig. 3 shows the simulated VOR in response to
sinusoidal rotation.

We compared the performance of the ssest algorithm and
the MELS algorithm in identifying the dynamics of the VOR
slow phase segments in several cases, including different
white Gaussian noise levels and also realistic EOG noise.
Realistic noise signals are neither white nor Gaussian, and
are simulated according to the noise analysis study in [3].
Statistical properties of the identified parameters and %VAF
are computed in 100 Monte-Carlo simulations with different
Gaussian/realistic noise realizations. Here we present the
results of this comparison in the following cases:
• Case1- Noise free input-output data
• Case2- White Gaussian output noise, SNR=40 db.
• Case3- White Gaussian output noise, SNR=20 db.
• Case4- White Gaussian output noise, SNR=10 db.
• Case5- Realistic output noise for EOG, SNR=31 db.
Fig. 4 shows the summary of this comparison. Searching

for the canal time constant, Tc = 6 sec, with both methods
results in finding the correct value in all cases. Noise free
output data also results in perfect estimation of the unknown
parameters. However, as the noise levels increase in Case2-
4, the MELS algorithm provides biased mean values for
both T and g with small confidence interval, yet with high
%VAF. This is because the prediction errors are biased and
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Fig. 4. Result of 100 Monte-Carlo VOR identification with ssest and
MELS. (A) Identified time constant, T ; (B) Identified gain, g; (C) %VAF of
prediction on data used for identification; (D) %VAF of prediction validation
data. Red bars show the 95% confidence interval of the values.

not white in many segments. On the other hand, as the noise
level increases, the ssest algorithm identifies unbiased mean
values of T and g with higher %VAF, with larger confidence
intervals with higher noise levels, as expected. Non-Gaussian
realistic additive noise, i.e. Case5, also results in unbiased
identification of the dynamics and initial conditions of the
VOR slow phase system with the ssest algorithm, while
the parameters estimated by MELS are biased, despite a
relatively high identification and validation %VAF.

Therefore, given low frequency sinusoidal input and re-
alistic noise levels, the performance of the ssest algorithm
in identifying VOR dynamics is considerably better than
MELS, in terms of statistics of the residuals and robustness
of estimates across noise properties.

B. Experimental Results

We evaluated the performance of the ssest method on
experimental data. VOR data is recorded using EOG in the
dark while the subjects are secured on a chair with the
head restrained to a head rest. The angular head position
was controlled by rotating the chair. Data is sampled at
500 Hz and is decimated to 250 Hz. Data calibration and
drift removal are performed according to the procedure in
[12]. Input-output data is then filtered to 55Hz using digital
filtering. Rotation is performed at 1/6 Hz with peak velocity
of 180 deg/sec for 65 sec. Data is first classified into slow
and fast segments. The semicircular canal time constant is
estimated using the approach described in Section II-A.

In order to obtain statistics on the identified dynamics we
performed 100 Monte-Carlo identification-validation tests on
the slow-phase segments. In each identification-validation
trial, half of the total slow phase segments are selected
randomly to be used to identify the dynamics and the other
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Fig. 5. Bode plot of 100 Monte-Carlo VOR identification. (A) ssest and
(B) MELS. legend→ green: Bode of each identified system, black: average
of the identified systems.

TABLE I
IDENTIFICATION RESULTS ON ONE NORMAL SUBJECT.

mean Tc(sec) T (sec) g %VAF %VAF
95% interval identification validation

14 3.86 -2.78 99.66 99.61
ssest

[14 14 ] [2.95 5.32] [-3.93 -2.13] [99.56 99.75] [99.48 99.73]

14 5.66 -4.04 99.53 99.38
MELS

[14 14 ] [ 2.98 17.70] [-13.01 -2.12] [99.33 99.64] [98.73 99.62]

non-overlapping slow phase segments are used for validation.
This is done to obtain 95% confidence intervals on the identi-
fied parameters. Since the true values of the VOR dynamics
are unknown, we rely on %VAF and the statistics of the
parameters as measures of the accuracy of our results. Fig. 5
depicts the bode plot of the 100 identified VOR slow phase
dynamics using ssest and MELS for one healthy subject. The
black line in the bode plots show the average of the identified
systems. Table I also summarizes the results of this analysis.
Fig. 6 shows an example of predictions with the average
models from ssest and MELS to validation data. It is seen
that despite high %VAF with the MELS algorithm, variation
on the identified parameters is considerably larger than that
of ssest. This suggests that the ssest method outperforms
MELS in estimating the VOR dynamics, mainly beacuse of
better zero-mean white residuals and repeatability.

IV. DISCUSSION

In this work, we used the state space identification ap-
proach (ssest) to identify the slow phase dynamics of the
VOR. A linear model formulation is used to model the
VOR dynamics. The challenge with identifying the VOR
dynamics is its switching nature and the effects of initial
conditions at each switching point that are usually ignored in
envelope approaches. Here we evaluated the performance of
the ssest method to estimate VOR dynamics using simulated
data with different noise levels and distributions, i.e. realistic
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Fig. 6. Comparison of identified model prediction on validation data with
ssest and MELS (shifted down by 10 deg). Dashed rectangles mark biased
prediction with MELS.

non-Gaussian noise. The results are also compared to a
former parametric method, MELS [2]. Since the former
algorithm uses noisy data in its regressors matrix, i.e. it is
based on 1-step ahead prediction, its performance is very
sensitive to additive noise, resulting in biased identification.
Comparison of ssest with MELS on experimental VOR data
shows that the state space identification method is more
accurate and robust in estimating a linear model for the VOR.
There remains extension of the approach to the nonlinear
characteristics of VOR data from controls and patients.
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