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Abstract— Despite its reliable diagnosis, schizophrenia lacks
an objective diagnostic test or a validated biomarker, which
prevents a better understanding of this disorder. Structural
magnetic resonance imaging (sMRI) has been vastly explored
to find consistent abnormality patterns of gray matter concen-
tration (GMC) in schizophrenia, yet we are far from having
reached conclusive evidence. This paper presents a machine
learning approach based on resampling techniques to find
brain regions with consistent patterns of GMC differences
between healthy controls and schizophrenia patients, these
regions being detected by means of source-based morphometry.
This work uses multi-site data from the Mind Clinical Imaging
Consortium, which is composed of sMRI data from 124 controls
and 110 patients. Our method achieves a better classification
rate than other algorithms and detects regions with GMC
differences between both groups that are consistent with several
findings on the literature. In addition, the results obtained on
data from multiple sites suggest that it may be possible to
replicate these results on other datasets.

I. INTRODUCTION

Source-based morphometry (SBM) [1] is a technique that
uses independent component analysis (ICA) [2] to obtain pat-
terns of common gray matter concentration (GMC) variation
among subjects. By applying SBM for schizophrenia studies,
GMC deficits clustered into independent spatial regions can
be identified. This approach has three main advantages. First,
it performs a multivariate analysis of whole-brain data, so it
does not restrict the analysis to a single region of interest.
Second, it accounts for spatial dependencies between differ-
ent brain locations, which are not taken into consideration by
univariate analyses such as voxel-based morphometry (VBM)
[3]. Third, it provides a better interpretation of the location
of GMC variations than voxel-based approaches.

Up to date, only univariate tests on the SBM components
loading coefficients have been used to identify those that
are significantly associated to schizophrenia. This kind of
approaches do not take into account the multivariate con-
tribution of these components to schizophrenia detection,
which would better assess SBM’s discrimination capacity
of healthy controls and schizophrenia patients. Furthermore,
such a classification pursuit would benefit from a feature
selection strategy, as only some of the SBM components are
usually associated to schizophrenia.
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While there is evidence that supports the reliability of
SBM findings on spatial components that are associated
to schizophrenia, doing a sparse selection of informative
components is not a trivial task. The reason behind this is
that this selection can change if some subjects are set aside
of the analysis due to inter-subject variability. If data from
multiple sites are incorporated in the analysis, then inter-site
variability can further complicate the analysis.

The objective of this work is to find components that have
a consistent contribution to the classification model and are
less sensitive to inter-subject and inter-site variability. One
way of doing so is by using resampling methods such as
bagging [4], which trains an ensemble of classifiers with
different data samples and gives a prediction based on a com-
bination of them. If the contribution of the components to the
classification task is evaluated across these data samples, it
is possible to detect the most consistently informative ones.

II. DATA

A. Participants

This study uses structural magnetic resonance imaging
(sMRI) data from the Mind Clinical Imaging Consortium
study of schizophrenia from 234 subjects from 4 participating
sites: Massachusetts General Hospital in Boston (MGH),
University of Iowa (UI), University of Minnesota (UMN),
and the University of New Mexico (UNM).

Schizophrenia was diagnosed according to DSM-IV cri-
teria [5] on the basis of both a structured clinical interview
and the review of the medical file. Healthy participants were
screened to ensure they were free from DSM-IV Axis I
psychiatric diagnosis and were also interviewed to determine
that there was no history of psychosis in any first-degree
relatives.

The analyzed data sample comprised 124 healthy controls
(75 males; mean ± SD age, 32.27 ± 10.89 years) and 110
schizophrenia patients (82 males; mean ± SD age, 34.86 ±
10.99 years).

B. Image Acquisition

SMRI data were acquired with either a Siemen’s 1.5-Tesla
(MGH, UI, and UNM) or a Siemen’s 3-Tesla (UMN) MR
scanners. The T1-weighted structural brain scans at each
of the 4 sites were acquired with an in-plane resolution of
0.625× 0.625 mm2, a slice thickness of 1.5 mm, and a flip
angle of 7 degrees. MGH and UNM used a Siemen’s 1.5-
Tesla scanner with repetition time (TR) = 12 ms, echo time
(TE) = 4.76 ms, and number of excitations (NEX) = 1. UI
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used a GE 1.5-Tesla Genesis Signa scanner with TR = 20
ms, TE = 6 ms, and NEX = 3. UMN used a Siemen’s 3-
Tesla scanner with TR = 2530 ms, inverse time (TI) = 1100,
TE = 3.79 ms, and NEX = 1.

C. Preprocessing

Images were preprocessed using the methods presented
in [6]. The SPM5 software package (http://www.fil.ion.ucl.
ac.uk/spm/software/spm5/) was used to segment the T1-
weighted images into gray matter, white matter and cere-
brospinal fluid images, using unified segmentation [3].

Since age and gender affect GMC [1], [6], and SBM
components as a consequence, these were regressed out
of the images voxel-wise prior to further analysis. Then
an isotropic 10 mm full width at half maximum Gaussian
filter was used to smooth the images. In order to overcome
imaging heterogeneity of this multi-site dataset, we regressed
out data collection site (N = 4 sites) from the loading
coefficients of the SBM analysis.

III. METHODS
A. SBM Analysis

This approach identifies spatial maps with common pat-
terns of GMC by applying ICA to the subjects’ GMC. This
provides a decomposition of these volumes into a linear
combination of spatial maps and loading coefficients. These
coefficients, which weight each component in each subject’s
data as depicted in Fig. 1, are used to examine component
differences between controls (Ct) and patients (Sz).
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Fig. 1. GMC images are concatenated for each subject. SBM decomposes
the subject/voxel matrix into loading coefficients (mixing matrix) and a
source matrix (spatial maps). The loading coefficients are unique for each
subject and permit group comparisons.

A larger loading coefficient associated to a spatial pattern
for an individual or group indicates that this component is
more strongly weighted in the data for that individual or
group. However, the interpretation of the loading coefficient
difference depends on the spatial map of the component. If
the spatial component is predominantly positive and if the
loading coefficients are greater in Ct than in Sz, we infer
that GMC is greater in Ct for the spatial component under
consideration [7].

The SBM module of the GIFT Toolbox (http://mialab.mrn.
org/software/gift/) was used to perform the ICA decomposi-
tions on the aggregated dataset. The number of components
was set to 30 as in [1], [6], and we used ICASSO (http:
//research.ics.aalto.fi/ica/icasso/, 20 runs) to determine the
stability of the components [6].

B. Bagged Support Vector Machine

The machine learning approach we propose to identify
components associated to schizophrenia is based on a linear
classifier, which is provided with N labeled training pairs
of data {(xi, yi)}Ni=1. Here, GMC data of subject i is
represented by the its S loading coefficients (S: number of
sources or components) such that xi = [xi1, . . . , xiS ]

>, and
yi indicates the subject class (-1 for Ct, +1 for Sz). The
estimated class of an unseen example x by a linear classifier
is defined by

ŷ = f(x) = sgn
(
w>x+ b

)
= sgn

(
S∑

d=1

wdxd + b

)
, (1)

where w = [w1, . . . , wS ] is the weight vector of the classi-
fier, each element of w being associated to one component.

Here we provide a brief insight of the interpretation given
to the components weights. For the sake of simplicity, let us
assume that all of the components spatial maps are predom-
inantly positive. If the loading coefficients of component d
were greater in Sz than in Ct, then GMC would be greater for
Sz for that component. Given the class representation of Ct (-
1) and Sz (+1), wd would take a positive value. On the other
hand, if loading coefficients of the same component were
lower in Sz, then GMC would be lower for Sz too and wd

would take a negative value. This gives a clear interpretation
of the role of each component in the discriminant function
defined on (1).

We use a support vector machine (SVM) [8] to train the
linear classifier. The SVM, which was coded in MATLAB
(http://www.mathworks.com) and solved using the MOSEK
optimization toolbox (http://www.mosek.com), finds w and
the bias term b in (1) by solving the following optimization
problem:

min
w,b,ξ

‖w‖p + C

N∑
i=1

ξi

s.t. yi
(
wTxi + b

)
≥ 1− ξi ∀i ∈ [1, N ]

ξi ≥ 0 ∀i ∈ [1, N ].

(2)

Slack variables ξi in (2) allow errors in training data, ‖w‖p
is an lp-norm regularization term that controls overfitting
and C is a parameter that controls the tradeoff between the
regularization and the training error terms.

The choice of norm p depends on the nature of the classi-
fication task. An l1-norm regularization enforces sparsity in
w, making the weights associated to non-informative features
equal to zero. Since the data dimensionality is significantly
reduced from hundreds of thousands voxels to S components
through SBM, an l1-norm regularization term is well-suited
to find informative components. Nonetheless, a selection of
informative components cannot rely on an l1-norm SVM
approach only, as its sparse selection can vary significantly if
some subjects are set aside of the analysis due to the inherent
inter-subject variability of the data. This problem can be
solved to a certain extent by using a pool of diverse linear
classifiers, as suggested by the starplots method proposed
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by [9]. However, our approach follows the rationale of the
bagged-selection presented in [10], which looks for features
with consistent weight patterns.

The way the ensemble of classifiers is constructed closely
resembles that of bagging classifiers [4]. Each classifier is
trained using a subset of M < N examples randomly
sampled from the training data. However, unlike [4], the data
is sampled with no replacement. The idea is to select those
components that exhibit a high degree of sign consistency
across the ensemble, disregarding those ones with unstable
sign fluctuations or that are rarely selected by the pool of
classifiers. The degree of sign consistency is defined by pa-
rameter r, which establishes a lower bound of the fraction of
classifiers in which informative components weights should
be consistently positive or negative.

C. Experimental Setup

The classification accuracy rate obtained by bagged SVM
was estimated using a leave-one-out cross-validation (loo-
CV) procedure. More specifically, 234 classifiers were
trained by using the data from all subjects except one, each
of them being tested on that left-out example. The fraction of
correctly classified examples using this experimental setting
defined the method’s accuracy rate.

There are also several parameters that need to be either
fixed to a given value or selected using some validation
procedure. These parameters are the number of classifiers
of the ensemble (P ), the number of examples drawn to train
each of these classifiers (M ), the sign consistency threshold
of the components (r) and the SVM parameter C. The
proposed approach did not seem to be sensitive to parameters
P and M , which were fixed to 250 and 80% of the available
data, respectively. However, the sign consistency threshold
defines the number of selected components, so it needs to
be validated. Furthermore, C also plays an important role in
determining the number of components to be selected, so it
needs to be properly estimated. To do so, an inner loo-CV
was ran inside each round of the loo-CV used to estimate
the classification accuracy. In other words, at each round of
the main loo-CV, a nested loo-CV selected the appropriate
values of C and r for that specific round. C was picked from
3 logarithmically spaced points in the range [0.1, 1], while r
was selected from the range [50%, 100%] in steps of 1%.

IV. RESULTS

A. Classification Accuracy

Table I shows the classification accuracy, sensitivity and
specificity rates achieved by Bagged SVM. This table also
shows the results obtained by a linear SVM with l1- and l2-
norm regularization terms, as well as for partial least squares
(PLS1) [11] and random forests (RF2) [12]. PLS and RF were
also implemented using MATLAB.

1the parameter #factors ∈ [1, S/2] was selected on the inner CV
2trained with fixed parameters: #trees=250, mtry=

√
S

TABLE I
CLASSIFICATION PERFORMANCE OF BAGGED SVM

Approach Class. Acc. Sens/Spec

RF 0.67 0.59/0.74
l1-norm SVM 0.68 0.61/0.73
l2-norm SVM 0.70 0.64/0.75
PLS 0.70 0.66/0.73
Bagged SVM 0.73 0.65/0.80

B. Relevant Components Statistics

The multivariate association of the components to
schizophrenia was evaluated in terms of their weights mean
and selection frequencies across CV rounds. Table II shows
the components that achieved a selection frequency greater
than or equal to 0.5 and the p-values associated to a two-
sample t-test across Sz and Ct on their loading coefficients.

TABLE II
RELEVANT COMPONENTS STATISTICS

Component Mean Selection t-test
Number Weight Frequency (p-value)

1 -0.64 0.98 1.50E-8
2 -0.44 0.79 4.42E-8
3 -0.23 0.97 0.01
4 0.26 0.50 9.09E-6

C. Components Loadings Directionality and Spatial Extent

Three out of the four listed components contain areas were
GMC is greater on Ct than Sz, while the other one shows
a reversed pattern. Table III also shows the set of brain
regions spanned by these components, which are graphically
depicted in Fig. 2.

TABLE III
LOADINGS DIRECTIONALITY AND COMPONENTS REGIONS

Component Loadings Brain
Number Directionality Regions

1 Ct>Sz
Superior Temporal Gyrus

Inferior Frontal Gyrus
Insula

2 Ct>Sz
Superior Frontal Gyrus
Middle Frontal Gyrus
Medial Frontal Gyrus

3 Ct>Sz
Middle Occipital Gyrus

Calcarine Cortex
Lingual Gyrus

4 Sz>Ct Brainstem

V. DISCUSSION AND CONCLUSIONS

To the best of our knowledge, this is the first work
that performs classification of schizophrenia using GMC
patterns obtained by SBM. In addition, the results obtained
on data from multiple sites indicate that it may be possible
to replicate these results on other datasets.
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Fig. 2. Spatial maps of the top 4 components showing (Ct/Sz) group
difference ranked by product of mean weight and selection frequency. All
maps are thresholded at |z-score| > 3.5. The colorbars indicate the color
mapping of the component weights.

We present evidence that the effects of imaging hetero-
geneity due to multi-site acquisition are successfully dealt
with our data analysis pipeline based on the accuracy rates
obtained by different classifiers (Table I). Site differences can
significantly deteriorate prediction capacity when working
directly with GMC maps, potentially giving poor accuracy
rates, as we discovered on preliminary analyses.

The reliability of Bagged SVM is supported by the results
presented in Table I. It can be seen that applying a linear
l1-norm SVM to the data is not beneficial, as its prediction
accuracy is lower than that obtained by an l2-norm SVM.
However, bagging significantly improves the performance of
l1-norm SVM, making it surpass the one achieved by l2-norm
SVM and PLS, which show equivalent performance. This
reinforces the notion that resampling can reduce the effect of
inter-subject variability of the data for feature selection if it is
used appropriately on the analyzed domain. For instance, RF,
which also apply resampling and perform feature selection,
show a suboptimal performance.

Table II shows the components that were more informative
for schizophrenia classification, along with the multivariate
statistics retrieved from Bagging SVM and the results of
two-sample t-tests across Sz and Ct on their loading coef-
ficients. Components 1, 2 and 4 are significantly associated
to schizophrenia according to the univariate tests, which is
not the case of component 3. This result suggests that the
multivariate analysis performed by Bagging SVM is capable
of detecting relevant components that would be rendered

irrelevant to schizophrenia based on univariate tests. In fact,
a similar component that covers the middle occipital gyrus is
reported to be significant for schizophrenia on a very large
data study [7].

Fig. 2 shows the spatial extent of the components, the
labels of these regions being listed in Table III. Compo-
nent 1 presents the largest GMC differences between Ct
and Sz according to Bagging SVM and includes, among
other regions, the superior temporal gyrus, which represents
one of the most consistent structural abnormalities found
on schizophrenia [13]. In addition, several of the regions
identified by the VBM meta-analysis in [14] as having GM
deficits in schizophrenia are detected in this analysis across
components 1 and 2.

On the other hand, component 4 shows increased GM in
Sz. This component covers the ventral tegmentum, which
is responsible for dopamine production. Since most an-
tipsychotic treatments tend to block receptors in the brain’s
dopamine pathways, this may result in compensatory in-
creases in GM in some brainstem regions [7], [15].
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