
  

 

Abstract—Compressed sensing (CS) is a promising approach 

to accelerate dynamic magnetic resonance imaging (MRI). Most 

existing CS methods employ linear sparsifying transforms. The 

recent developments in non-linear or kernel-based sparse 

representations have been shown to outperform the linear 

transforms. In this paper, we present an iterative non-linear CS 

dynamic MRI reconstruction framework that uses the kernel 

principal component analysis (KPCA) to exploit the sparseness 

of the dynamic image sequence in the feature space. Specifically, 

we apply KPCA to represent the temporal profiles of each 

spatial location and reconstruct the images through a modified 

pre-image problem. The underlying optimization algorithm is 

based on variable splitting and fixed-point iteration method. 

Simulation results show that the proposed method outperforms 

conventional CS method in terms of aliasing artifact reduction 

and kinetic information preservation. 

 

I. INTRODUCTION 

Dynamic magnetic resonance imaging (MRI) produces a 

series of images characterizing certain kinetic information of 

tissues. For Cartesian trajectories, the long data acquisition 

time limits the achievable spatiotemporal resolution. 

Reducing the amount of acquired data without degrading 

image quality is a possible approach to accelerate the imaging 

speed and thus improve the spatiotemporal resolution. A lot of 

efforts have been made to reconstruct the image sequence 

from undersampled measurements by exploiting either spatial 

or temporal correlations [1]-[7]. Among various approaches, 

compressed sensing (CS), which utilizes the sparseness of the 

image sequence, has demonstrated great potentials in image 

reconstruction from randomly undersampled k-space data 

[8]-[13]. One of the keys to the success of CS reconstruction 

lies in choosing a certain sparsifying transform that can make 

the image sequence as sparse as possible. Since the dynamic 

image sequence shows high correlations between adjacent 

frames, typical transforms employed by existing CS dynamic 

imaging methods are mostly applied along the temporal 

directions, such as Fourier transform [8]-[10][12], principal 

component analysis (PCA) [10], and dictionary learning 

[11][13]. These transforms are performed in the original 
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linear space, which might not effectively represent the 

non-linear features of the temporal variations. 

In recent years, kernel-based sparse representation has 

attracted a lot of attention. It has been applied in various 

applications, such as classification and recognition, and has 

demonstrated promising superiorities over linear sparse 

representations [14]-[17]. The basic concept of kernel sparse 

representation is constructing a non-linear mapping from the 

original signal space to a high dimensional feature space and 

looking for the sparse representation of the mapped signal. 

Kernel sparse representation has been incorporated into the 

CS reconstruction framework [18][19]. The kernel trick is 

used to extend both the measuring process and sparse 

representations to the high dimensional feature space. For CS 

dynamic imaging, a kernel-based method was recently 

proposed [20]. It explicitly maps the acquired data to a higher 

dimensional space and then performs CS reconstruction in the 

feature space. The desired image sequence is finally obtained 

by solving a pre-image problem. This method achieves better 

reconstruction qualities than conventional CS, but it requires 

the explicit knowledge of the mapping, which is not available 

for certain kernel functions [21]. 

In this paper, we propose a non-linear CS dynamic MRI 

reconstruction method that employs kernel sparse 

representation as regularizations. Specifically, we apply 

kernel PCA (KPCA) to represent the signal in the feature 

space. The resulting highly non-linear optimization problem is 

solved by variable splitting and fixed-point iteration method. 

Retrospective simulation results show that the proposed 

method is capable of reducing aliasing artifacts and preserving 

temporal features compared to the conventional method using 

linear PCA as the sparsifying transform. 

This paper is structured as follows. In Section II, the basics 

of kernel method and KPCA are briefly described. Then, the 

proposed KPCA-based CS dynamic MRI model is introduced. 

Finally, the optimization algorithm is detailed. Section III 

shows the simulation results using an arterial spin labeled 

(ASL) perfusion data. The paper is concluded in Section IV. 

II. THEORY 

A. Kernel Method and Kernel PCA 

In a nutshell, kernel method aims to exploit the non-linear 

features of the data and develop the non-linear version of a 

given linear algorithm [21]. In kernel method, the original 

data is first transformed to a higher dimensional space using a 
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feature mapping function : , where  denotes the 

original data space and  stands for the feature space. Then, 

the linear algorithm is performed in the feature space. For 

certain applications such as classification and recognition, the 

results from the feature space can be directly adopted. 

However, for reconstruction purposes, we have to transform 

the data back to the original space by solving a pre-imaging 

problem [21][23].  

The dimension of feature space is always much higher than 

the original space. Performing linear algorithms on such high 

dimensional data may result in unaffordable computational 

complexities. Furthermore, the dimension of the feature space 

can be infinite in some cases, making it impossible to execute 

the algorithm directly. However, when the linear algorithms 

only need to compute inner products, the kernel trick can be 

applied to compute the inner product in the feature space using 

a kernel function without the explicit knowledge of the 

mapping. The kernel function is a symmetric function of two 

variables defined by 

 ( , ) ( ), ( )
i j i j

k x x x x ,  (1) 

where 
i
x , ( )

i
x . Typical kernel functions include 

the radial basis function (RBF) 
2

2
( , ) exp
i j i j

k cx x x x  

with 0c  controlling the width of the RBF, and polynomial 

function ( , ) ( , )b
i j i j

k ax x x x , where a is a scalar and b is 

the degree of polynomial. 

 As a widely used dimensionality reduction method, PCA 
projects high dimensional data to a low dimensional sub-space. 
The projected data can be viewed as a sparse representation of 
the original data. KPCA is a non-linear version of PCA which 
performs the projection in the feature space [22]. Different 
from PCA, KPCA does not obtain the principal components 
(PCs) explicitly in the feature space. Since each PC can be 
represented by a linear combination of training signals, KPCA 
computes the representation coefficients of PCs instead. 

Given a set of L training signals 
l
p  ( 1,2, , )l L , a PC in 

feature space can be expressed by
1
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representation coefficients. Define anL L kernel matrix 
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and the centered kernel matrix 

 
C

L L L Lp p p p p
K K 1 K K 1 1 K 1 ,  (3) 

where 
L
1  is anL L  matrix with all entries equal to 1/L. The 

representation coefficients of PCs are obtained by solving the 

following eigenvalue problem 

 C

p
K ,  (4) 

where  is the length of the PC, 
1 2
[ ]T

L
.  

Once the PCs are obtained, we can compute the projection 

of a test signal on a certain PC. For a test signal x , define the 

kernel vector 

 
1 2

[ ( , ) ( , ) ( , )]T
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k k k
xp
k p x p x p x ,  (5) 

and the centered kernel vector with the entries calculated by 

 1 1

2
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The projection of centered ( )x , namely ( )x , onto the k-th 

PC is computed by ( )C T k
k xp

k .  Similar to PCA, ( )x can 

be approximated by the first K largest PCs in the feature space  
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where 
1
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l k lk
. Then, ( )x is obtained by 
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1
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l l l
l lL

x x p p , (8) 

where 
1

(1 )
L

l l ll
L . The above formulation (8) 

provides a sparse approximation of ( )x  and the sparsity is 

controlled by the number of PCs used for approximation. 

B. Proposed Method 

As shown above, KPCA offers a non-linear approach for 

sparse representation. In this paper, we aim to use KPCA to 

represent the temporal profiles of a dynamic image sequence. 

Let x be the vectorized image sequence. Define 
mR as the 

operator that extracts the temporal curve at the m-th spatial 

location and 
m m
x R x . We propose the following two-step 

iterative reconstruction scheme. 

 Step 1: sparse approximation 

Using KPCA, ( )
m
x can be approximated by 

 
1

( ) ( )
L

m

m l l
l

x p . (9) 

Here, the training signals 
l
p represent the temporal variation. 

They are chosen from the results of previous iteration. The 

number of PCs used to compute m

l  controls the sparsity level 

of ( )
m
x . 

 Step 2: image reconstruction 

Once m

l is obtained, x is reconstructed by 
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2
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1
min ( ) ( )
2

L
m

u m l l
m l

x
y F x x p ,  (10) 

where y is the acquired k-space data, 
u
F  is the undersampled 

Fourier transform, and  is a weighting parameter. The first 

term enforces the data consistency in the original space, and 

the second term is a classical pre-imaging formulation. Thus, 

(10) can be viewed as a regularized pre-imaging problem. 

Expanding the second term in (10), we arrive at the following 

problem 

 
 ,

          

2

2

1
min ( )

2
2 ,

m

u m m
m

T T

m m m
m m

k
x

x p p

y F x x x

k K
 (11) 

where 
1 2
m m m T

m L
. Note that the last term in (11) 

is a constant since 
m

and 
p
K are known. 

C. Optimization Algorithm 

Since most kernel functions are non-linear functions, the 

optimization problem (11) is difficult to solve. Here we focus 

on RBF kernel which leads to k(xm, xm) = 1. Neglecting the 

constant terms in (11), we obtain the following minimization 

problem 

  
2

2

1
min 2

2 m

T

u m
m

x px
y F x k . (12) 

Introducing an auxiliary variable d x , we arrive at the 

equivalent form of  (12) 

 
  

     

2

2,

1
min 2

2
s.t. .

m

T

u m
m

x pd x
y F d k

d x

 (13) 

The scaled augmented Lagrangian function of (13) is 
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where u  is called the scaled dual variable of the Lagrangian 

multiplier and is the penalty parameter. We derive the 

following iteration scheme: 
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1 1 1k k k ku u d x  . (17) 

The d-subproblem has a closed-form solution: 

 1( ) ( )H H

u
d F P I F F y x u , (18) 

where F  is the Fourier transform, P is the undersampling 

pattern in k-space, and 
u
F PF .  

The x-subproblem is still highly non-linear and we apply 

the fixed-point iteration scheme [22]. Note that the objective 

function in (16) is separable for different m. Taking the 

derivative of the objective function for each m, and 

performing basic algebra operations, we get the fixed-point 

iteration scheme 

 1

1

4 ( , ) ( )

4 ( , )

L
m T T T T
l m m m l m l m m

T l
m m L

m T T
l m m m l

l

c k

c k

R x R p R p R R d u
R x

R x R p I

. (19) 

The final reconstruction is then obtained by 

 T

m m
m

x R x .  (20) 

III. SIMULATION RESULTS 

We used a set of ASL perfusion data on calf muscle to 

evaluate the performances of the proposed method. The 

acquisition parameters are: TR/TE= 2.8/1.2ms, flip angle = 5°, 
FOV =160 × 112 mm2, and matrix size = 112 × 100 × 20 

(#FE×#PE×#frame). We applied the 1-D random down 

sampling pattern along the PE direction frame by frame. The 

central part of the k-space was fully sampled with a total of six 

PE lines for all frames. The net reduction factor was 3. 

Conventional CS reconstruction using PCA as the sparsifying 

transform was also performed for comparison. The images 

obtained from the full k-space data were used as the reference. 

As stated previously, we used RBF kernel for KPCA and 

the RBF width parameter c was 20. KPCA needs a set of 

training signals. We randomly selected some temporal 

profiles from the images of previous iteration. In the 

initializing stage, the training signals were obtained from the 

low resolution images based on the fully sampled central 

k-space region. In this simulation, we set the number of 

training signals (L) to 1024, and the number of PCs (K) to 50. 

The regularization parameters were manually tuned to get the 

best results and we chose = 0.001 and = 0.01. 

Figure 1 shows the reconstruction results of the second 

frame, which is challenging for CS reconstruction due to the 

low signal to noise ratio (SNR). Compared with conventional 

CS reconstruction, the proposed method reduces the aliasing 

artifacts, especially in the regions indicated by arrows. The 

error images demonstrate that the proposed method produces 

more accurate reconstruction in most regions. We notice that 

the proposed method shows higher errors on the edges of 

structures than other regions. The reason is probably that the 

training signals are randomly selected and the number of 

training signals may not be enough to cover all temporal 

variations. Increasing the amount of training signals is 

expected to improve the reconstruction qualities, but it will 

raise the computational complexity as well. Another approach 

is to change the way of selecting training signals and make 

sure they can cover all kinds of temporal profiles. 
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Figure 1. Comparison of reconstructions of the 2nd frame. (a) Reference 

image. (b) Result using zero-filling. (c) Result using the proposed method. (d) 

The error image of (c).  (e) Result using conventional CS. (f) The error image 

of (e). For better visualization, the images are scaled by 2 and the errors are 

scaled by 10. 

 

Figure 2 compares the average temporal curves of a 

selected region of interest (ROI) indicated in Figure 1(a). To 

get better visualization effects, we depict the zoom-in images 

of two parts. The result of the proposed method follows the 

reference curve closer than conventional CS method, 

suggesting that it is capable of capturing rapid kinetic 

information. 
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(a)                                                        (b) 

Figure 2. The average intensity of ROI v.s. frame curves. (a) Frame 1-2. (b) 

Frame 5-10. 

IV. CONCLUSION 

In this paper, we develop a novel undersampled dynamic 

MRI reconstruction model by integrating KPCA with the CS 

framework. We employ KPCA as the sparse representations 

of the dynamic variations in the feature space. The image 

sequence is then obtained by solving a modified pre-imaging 

problem. Retrospective simulation shows encouraging results 

that the proposed method can reduce the spatial aliasing 

artifacts and preserve the temporal variations. Future work 

will be on the selection of kernel functions and efficient 

optimization algorithms. 
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