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Abstract— Radiofrequency catheter ablation of atrial fibril-
lation (AF) guided by complex fractionated atrial electrograms
(CFAE) is associated with a high AF termination rate in
paroxysmal AF, but not in persistent. CFAE does not always
identify favorable sites for persistent AF ablation. Studies
suggest that only high fractionation level should be used
as a target site for ablation. Nonetheless, there are not a
standardized criterion to defined fractionation levels. Therefore,
a better characterization of the signal is required providing a set
of more powerful features that should be extracted from CFAE.
Due to the apparent difference among fractionation classes in
terms of their stochastic variability, we test time-domain and
time-frequency based feature extraction approaches. Also, we
carried out the symmetrical uncertainty-based feature selection
to determine the most relevant features which improve dis-
crimination of fractionation levels. Obtained results on a tested
real electrogram database show that most relevant features
in time-domain are related with time intervals and not with
amplitudes. Nonetheless, time-frequency features obtained more
information from the signal and this representation is likely a
better suitable discriminating approach, particularly to detect
high fractionated electrograms with a sensitivity and specificity
of 83.0% and 93.6%, respectively.

I. INTRODUCTION

Among cardiovascular diseases, atrial tachyarrhythmias
are one of the major causes of morbidity, being atrial
fibrillation (AF) the most common type affecting 2% of
population with increasing incidence. Worse still, AF is a
significant and growing expense for health systems.

To study propagation patterns in AF patients, recordings
inside the heart chambers using catheter (termed Atrial
electrograms - EGM) are widely considered. Most clinical
electrophysiologists pay attention to complex fractionated
atrial electrograms (CFAE), whose ever-changing morpholo-
gies, interbeat intervals, and amplitudes are assumed to har-
bor AF sources. Moreover, several studies have shown that
only CFAE signals with high fractional levels are suitable
targets for ablation, used to remove fibrillatory substrates [1].
Nonetheless, different fractionation levels and morphologies
presents in EGM are not well described, making difficult
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distinguishing among them [2]. Furthermore, most of the pro-
posed methods to detect CFAE do not discriminate between
intermediate and high levels of fractionation EGM [1].

To deal with the above explained restrictions, different
approaches have been proposed to discriminate among frac-
tionation levels by using extensive feature sets [3], however,
their correlation with arrhythmogenic substrates is still an
open issue. Here, to better encode non-stationary behavior of
EGM recordings, we propose two different sets of features:
one based on time EGM signal descriptors and another is
time-frequency-based. Afterward, we select the most relevant
features belonging to each set to feed a simple k-nn classifier,
aimed to distinguish different CFAE levels.

II. METHODS

A. Descriptive time-domain features

CFAE is a low voltage atrial EGM composed by either
two deflections or fractionated EGM with a baseline per-
turbation [4]. Besides, several CFAE has very short cycle
length (<120ms) with or without multiple potentials, where
each cycle length is defined as the time between two local
activation waves (LAW). Thus, CFAE is calculated by detect-
ing deflections and LAWs over time-domain observations.
Particularly, a detection algorithm is given in [5] where near-
field potentials are extracted from EGMs, then, LAWs can be
detected by applying an adaptive threshold in the "near-field"
signal after squaring and moving window integration.

In practice, deflections are searched by detecting pair-
wise maximum-minimum events representing near and far
components of EGM signal, x∈RT . To this end, we use a
zero-crossing detector of the first derivative along the input
signal length T∈N . Nonetheless, to avoid noise influence,
we propose automatically adjust the detection threshold,
γ(i), during each i-th LAW segment. Specifically, the needed
threshold is fixed as γ(m)=γ(0)+0.2xmax ∀m=1, . . . ,M
with M the number of LAWs, xmax is the maximum EGM
signal value within the LAW interval, and γ(0) is the voltage
threshold at t=0, computed as the root mean square value
of x along T and divided by an introduced sensitivity
parameter, a∈R+ . The same LAW length is fixed as the
window lasting from the middle point of the interval between
neighboring i and i−1 LAW segments to the middle point
of the interval between i and i+1 LAW segments.

As a result, derived from the above segmentation proce-
dure, we consider the following set of nF=12 descriptive
features shown in Table I where the number of inflection
points is calculated using zero-crossing detection along the
second derivative.

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 1595



TABLE I

SUMMARY OF TIME-DOMAIN BASED FEATURES

Index Feature Description
1 AWp total number of LAW
2 MMp total number of maxima points
3 MMp mean mean of max-min pairs intervals
4 BC sd stand. dev. of max-min pairs intervals
5 Infl. Number of inflection points
6 AW sd standard deviation of intervals between LAWs
7 AW mean mean of intervals between LAWs
8 LAW/MMp (LAWs)/(max-min points)
9 MMa mean mean of max-min pair amplitude
10 MMa sd standard deviation of max-min pair amplitude
11 LAWa mean mean of amplitudes of LAWs
12 LAWa sd standard deviation of LAWs amplitudes

B. Features extracted from time-frequency representation

To analyze non-stationarity of signals, we employ the
continuous wavelet transform (CWT) quantifying similarity
between a given EGM time-series x and a basis function set
ψ(τ, b)∈RT , using the inner product based decomposition:

s(t, b) = 〈x,ψ∗((τ − t)/b)〉, (1)

where ∗ denotes the complex conjugate, b∈R+ is the scale,
and τ∈R+ is the support interval of analysis. Consequently,
by varying the wavelet scale b and translating along the
localized time index t, we can construct scale representations
pointing out on spectral variations along the time.

C. Symmetrical uncertainty-based feature selection

Relevance analysis distinguishes those salient features
(termed as relevant features) better representing the subjacent
physiological phenomena, in terms of an a priori fixed
measure of evaluation (relevance measure). Consequently,
feature selection aims to reject those variables that have
negligible representing abilities.

However, due to clear difference among fractionation
levels in terms of their stochastic variability, we use as the
relevance measure its Symmetrical uncertainty, ρ∈R+, that
for a given feature, ξ∈RnO , nO∈N, is defined as follows [6]:

ρ(ξ|C) = 2
H(ξ)−H(ξ|C)

H(ξ) +H(C)
, (2)

where H(·)∈R+ is the entropy estimated over the total num-
ber of observations, nO∈N. Likewise, H(ξ|C) is the condi-
tional entropy of the conditional distribution of ξ, given the
explained below class label collection C = {c0, c1+2, c3}.

III. EXPERIMENTAL SET-UP

A. Database acquisition and preprocessing

To validate the proposed training approach, we use the data
collection provided by “Staedtisches Klinikum Karlsruhe”∗

that holds a set of nO=429 recordings acquired after pul-
monary vein isolation using a multipolar circular catheter. All
patients were indicated for radiofrequency ablation AF. Each
signal was recorded at 1.2 kHz sampling rate lasting 1.25 s

∗www.klinikum-karlsruhe.com
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Fig. 1. Examples of the considered EGM recording classes: Fractionation
level 0 (labeled as c0), levels 1 ∪ 2 (c1+2), and level 3 (c3).

and bandpass filtered with a [30, 250] Hz bandwidth. Then,
the baseline wander and high noise were removed using
the wavelet-based method described in [7]. Every recording
was independently annotated according its morphology by
two different electrophysiologists and only signals with the
same identification were considered. Information about AF
condition or specific arrhythmogenic substrates were no
considered in the annotation process. We split the whole
training set into the following physiological classes (ci⊂C):
153 recordings are labeled as Non-fractionated EGM (noted
as c0), 223 signals (noted as c1+2) regarding mild and
intermediate fractionation levels as labeled in [7], and 53
signals are related to the high (c3) class. Fig. 1 shows
examples of the considered CFAE levels.

B. Feature extraction from EGM recordings

a) Calculation of Time-domain based features: To
compute explained above descriptive features and to extract
the near field activation, we calculate three fine scales of
the Continuous Wavelet Transform using the Mexican-hat
mother wavelet. Besides, to accomplish segmentation of
near field potentials (see Fig. 2) we carry out detection of
LAWs using the integration window and adaptive threshold
proposed by Pan and Tompkins. Heuristically, we adjust the
value of integration window equals to 40 samples, exceeding
the LAW width. In turn for detection of max-min points, the
needed threshold sensitivity parameter is fixed as a=3, in
accordance to a used Fisher’s discriminant ratio-based opti-
mization procedure. Hence, the feature matrix Ξ1∈R

nO×nF

stands for the set of estimated descriptive parameters, where
nF is the number of extracted features.

b) Calculation of time-frequency based feature set:
CWT-based characterization of EGM signals is also consid-
ered as discussed in [5]. To this, we use the Daubechies-4
mother wavelet for which the number of scales is heuristi-
cally fixed as 128. Thus, we extract from each recording a
single t-f representation, S(t, f)∈RT×F , holding T=1500
time samples and F=128 frequency or scale points. Then, a
t-f feature supermatrix Ξ2∈R

nO×TF is obtained by vector-
izing each estimated t-f representation.
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C. Features selection based on analysis of relevance

We carry out relevance analysis based on Eq. (2) that,
for each observation, yields a feature vector holding those
characteristics whose relevance value is larger than an a
priori given threshold ǫ∈R+ . For the time-domain based
features, a single value of relevance is calculated for each
feature, obtaining a relevance vector ρ∈RnF , as shown in
Fig. 3(a). In case of the t-f based features, a relevance value
is computed for each point of the t-f representation (Right
panel of Fig. 3(b)) that is further averaged over the time-axis
to get a relevance vector ρrFsu

∈RF . Therefore, we choose
the most relevant scales through the t-f representations.

The tuning procedure of the number of relevant features
for each extraction approach is carried out using a simple k-
nn classifier following the commonly known cross-validation
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Fig. 2. Sample of EGM segmented signals. Note that not all maximum-
minimum pair correspond to a LAW, mainly, in high fractionation signals.
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Fig. 3. Symmetrical Uncertainty measured over each set of features.
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Fig. 4. Tuning the number of relevant features, mean and std values over
10 runs are presented. a) Maximum accuracy is reached with 40% of the
time-domain based features and b) with 25%of the t-f based features.

scheme (i.e., 10-folds). The number of neighbors is set
empirically by including all the feature space. Namely, we
set k=3 for both feature extraction approaches. Thus, we
set the threshold ǫ to overcome a certain percentage of the
relevant features. In turn, we stepwise increase from 20% to
100% by 10% steps for the time-domain based feature set,
and with steps of 5% for the t-f based feature set. Lastly, we
accomplish the well-known dimension reduction approach
two-dimensional principal component analysis (2D-PCA) to
reduce the high-dimensional feature space obtained using
the t-f based approach. In this case, we set empirically the
number of components (in rows and columns) as nc=25.
Fig. 4 shows values of the mean and standard deviation
averaged over the 10 folds estimated for tuning the number of
relevant features in both approaches (upper panel –the time-
domain based features, and lower panel – the t-f features).

Overall, according to the results shown in Fig. 4(a), we
select the 40% of the most relevant features (corresponding
to features 2, 4, 5 and 8 in Table I) for the time-domain
based features. For the t-f based features, we also select the
25% of the most relevant scales bands (i.e., 32 scales), see
Fig. 4(b). Therefore, we get a set holding 80 features after
2D-PCA-based dimension reduction is carried out.

Once all the parameters are tuned by maximizing the
average accuracy of class separation, the final results are
obtained as the sensitivity and specificity for each class
as shown in Table II. It must be quoted that for the sake
of comparison, we use the nonlinear statistic Approximate
Entropy feature set (noted as ApEn) that quantifies signal
complexity and turns to have positive relationship to the
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degree of fractionation, as discussed in [8] where the needed
parameters for their computation are adjusted as m=3 and
r=0.38. Notation m stands for embedded dimension and r
is a certain sensitivity-to-noise threshold.

TABLE II

PERFORMANCE ACHIEVED BY EACH CONSIDERED FEATURE SET

ApEn
Class Se (%) Sp (%)
C0 85.79±0.10 94.13±0.05
C1+2 83.87±0.04 81.08±0.10
C3 61.33±0.21 93.92±0.04
CT 69 [ms]

time-domain set
Class Se (%) Sp (%)
C0 87.50±0.11 94.93±0.05
C1+2 88.36±0.06 80.01±0.07
C3 50.00±0.16 95.72±0.03
CT 0.9 [ms]

t-f set
Class Se (%) Sp (%)
C0 89.71±0.08 95.63±0.06
C1+2 85.16±0.08 89.40±0.07
C3 83.00±0.12 93.63±0.06
CT 1400 [ms]

Computational time (CT) is computed using Matlab environment in a
PC with Intel Core i7 processor and 6 GB RAM.

IV. DISCUSSION AND CONCLUSION REMARKS

To differentiate among atrial EGM fractionation levels, we
compare three different feature extraction approaches: time-
domain, t-f domain, and non-linear features. Then, we select
the most relevant features per set to train a k-nn classifier.
As feature selection approach, we use a concrete supervised
relevance measure based on the entropy. In this way, we
can get the features that best discriminate among classes.
Nevertheless, two issues must be considered, namely: i)
performance strongly depends on how accurate the training
set labeling is. In the case of biosignals, this procedure are
very subjective to the medical criterion, and ii) about the high
fractionated signals, time-domain analysis based in LAW
intervals is difficult. As a result, obtained results show that
t-f based features, where the measure does not consider any
relationship between LAW segments, are suitable for sepa-
rating among different fractionation levels. In turn, Fig. 3(b)
shows two peaks of relevance around scales, numbered as
10 and 34, that correspond to frequencies close 25 and
86Hz, respectively. Nevertheless, further studies are needed
to verify the physical interpretation of those frequency bands.

Fig. 3(a) shows assessed relevance of the time-domain
based features, where highest values of ρ correspond to the
total number of maxima points and to time intervals between
max-min points. This behavior can be explained because of
the CFAE definition that is based on the deflection number
within each LAW segment, which holds a direct relationship
to maxima and minima points. Also, the LAW and max-
min pair amplitude features have the lowest relevance. In
bipolar EGM, this fact may be explained since amplitudes

are influenced by the action potential propagation direction
relative to electrode position.

In this study, we consider two main classification issues:
Discrimination of non-CFAE recordings c0, and discrimina-
tion between intermediate and high level fractionation. All
the obtained results are summarized in Table II. In the former
problem, we did not find significant differences among the
three feature sets that also can be compared with the state
of the art approaches [9]. In the later case, the time-domain
based features achieve high sensitivity values to discriminate
recordings belonging to c1+2, but low sensitivity values to
detect c3 recordings. This behavior may be explained because
time-domain features are based in a segmentation process;
however this class (c3) is characterized by continuous activity
where segments are not apparent, even for physicians [2].
Similar results are achieved with the non-linear feature.

Lastly, we remark that the levels of sensitivity achieved
by the t-f based features overcome results with the other
proposed characterization approaches. This fact suggests that
CWT based features are able to capture non-stationary infor-
mation associated with high fractional signals. Despite the
promising results obtained by the t-f based features, it must
be quoted that this characterization requires significantly
most computation time, which can be seen as a drawback
of this approach.

The use of relevant features to discriminate EGM frac-
tionation levels and morphologies can improved the local-
ization of target site for ablation based in CFAE. As a
future work, we propose to use a combination of classifiers
to take advantage of properties supplied by the different
characterization methods under consideration in terms of
improving discrimination among CFAE levels.
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