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Abstract—Burst suppression is an electroencephalogram
(EEG) indicator of profound brain inactivation in which bursts
of electrical activity alternate with periods of isoelectricity
termed suppression. Specified time-varying levels of burst
suppression are targeted in medical coma, a drug-induced
brain state used for example to treat uncontrollable seizures.
A brain-machine interface (BMI) that observes the EEG could
automate the control of drug infusion rate to track a desired
target burst suppression trajectory. Such a BMI needs to use
models of drug dynamics and burst suppression observations,
whose parameters could change with the burst suppression level
and the environment over time. Currently, these parameters
are fit prior to real-time control, requiring a separate system
identification session. Moreover, this approach cannot track
parameter variations over time. In addition, small variations
in drug infusion rate may be desired at steady state. Here we
develop a novel adaptive algorithm for robust control of medical
coma in face of unknown and time-varying system parameters.
We design an adaptive recursive Bayesian estimator to jointly
estimate drug concentrations and system parameters in real
time. We construct a controller using the linear-quadratic-
regulator strategy that explicitly penalizes large infusion rate
variations at steady state and uses the estimates as feedback
to generate robust control. Using simulations, we show that
the adaptive algorithm achieves precise control of time-varying
target levels of burst suppression even when model parameters
are initialized randomly, and reduces the infusion rate variation
at steady state.

I. INTRODUCTION

Medical coma is a drug-induced state of profound brain
inactivation used after traumatic brain injuries and for treat-
ment of uncontrollable seizures. The electroencephalogram
(EEG) signal in medical coma, termed burst suppression,
consists of bursts of electrical activity alternating with
suppression periods. In current practice, medical coma is
maintained by the intensive care unit (ICU) staff who target
a specified suppression level by manually adjusting the
anesthetic infusion rate based on the patient’s EEG activity.
Since the state of coma for such treatments is usually
required for days, it is often infeasible for the ICU staff to
continuously monitor the EEG and adjust the drug infusion
rate to achieve tight control. To enable automatic control of
burst suppression in medical coma based on the EEG, brain-
machine-interface (BMI) systems can be developed [1], [2].

There has been considerable work on developing BMIs,
often termed closed-loop anesthetic delivery (CLAD) sys-
tems, for control of sedation and general anesthesia (e.g.,
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[3], [4]). For burst suppression, CLAD systems using non-
model based control have been implemented in a rat model
[5], [6]. However, these studies controlled a constant level of
burst suppression rather than time-varying levels needed in
medical coma, and reported average control results over ani-
mals. BMIs for management of medical coma only appeared
recently [1], [2] and used the concept of burst suppression
probability (BSP) [7] to quantify the burst suppression level.
The BMI in [1] used a stochastic controller that enabled
precise control of time-varying target BSP levels in individ-
ual rodents and allowed prompt transitions between levels
without overshoot or undershoot. To build this BMI, simple
models of drug dynamics and burst suppression observations
are used. Currently, the parameters of these models are
estimated in a system identification session prior to real-time
control, and are assumed to be static over time. However,
in the operating room or ICU, it is desirable to avoid
a separate system identification session. Moreover, system
parameters can change over time with changes in BSP level
and environment. In addition, small variations in the drug
infusion rate at steady state may be desired for robust control.

Here we develop an adaptive BMI algorithm, called
online-identification (OnlinelD), which jointly estimates the
drug concentrations and system parameters in real time and
then uses these estimates as feedback to generate robust
control of burst suppression. The BMI algorithm is designed
in a stochastic optimal control framework that has been used
in BMIs for medical coma [1] and in motor BMIs [8], [9],
[10]. We use BSP as the control signal and design a recursive
Bayesian estimator by constructing and linearizing a nonlin-
ear state-space model. We use a linear-quadratic-regulator
(LQR) strategy to form a control law that takes both the
estimated system parameters and estimated BSP as feedback
to adjust the drug infusion rate and achieve a desired BSP
level. Finally, to ensure small steady-state variations in the
drug infusion rates, we add a novel penalty term to the
controller objective function. Using numerical simulations,
we show that the adaptive BMI algorithm achieves reliable
control in face of both unknown and time-varying system pa-
rameters. Even with random initial parameters, the algorithm
can achieve and maintain multiple target levels with low bias
and error, can enable prompt transitions between target levels
without overshoot and undershoot, and can ensure small drug
infusion rate variations at fixed BSP levels.

II. METHODS

The adaptive BMI algorithm, OnlinelD, consists of an
estimator that estimates the drug concentrations and system

1638



parameters online, and a controller that takes the estimates
as feedback to reliably track desired BSP levels and ensure
small steady-state infusion rate variations. We now present
the formulation, and the estimator and controller designs.

A. Problem formulation

We use BSP, denoted by p;, as our measure of the burst
suppression level. BSP indicates the brain’s instantaneous
probability of being suppressed and takes values in [0, 1].
BSP is computed by filtering and thresholding the EEG to
identify the activity in each small interval as a burst or a
suppression. This converts the EEG into a binary time-series,
with 1 indicating a suppression and 0 indicating a burst [1].
This binary signal is the input to our adaptive algorithm. We
relate BSP to the brain’s anesthetic concentration, denoted
by x.(t), via a hyperbolic transform [1], [7]

—e M) /(1 4 e7m®), (1)

The BMI aims to control the BSP or equivalently the brain’s
anesthetic concentration.

To develop the adaptive BMI, we build a state-space model
using the two-compartment model in [1], [2], [11] to describe
the anesthetic drug’s dynamics in burst suppression. The two
compartments represent the central plasma and the brain. We
also take the unknown time-varying system parameters into
consideration. We first rewrite the linear two-compartment
state-space model as

x(t) = A(t — D)x(t — 1) + bu(t — 1), 2)

1 — A(kee(t) + keo(t)) Akec(t)

, Akee(t) 1= Ake(t) |
and x(t) = [zc(t), zc(t)] , where z.(t) denotes the central
plasma drug concentration. Here b = [A,0] , where A is
the discretization time step. The control signal u(t) is the
instantaneous drug infusion rate. The system parameters,
i.e., kee(t), kec(t) and k.o(t), represent the rate of the drug
flowing from the central plasma into the brain, flowing from
the brain back to the central plasma, and being eliminated
from the central plasma, respectively. These parameters are
assumed to be unknown and time-varying.

Our adaptive algorithm estimates both the time-varying
system parameters and the anesthetic concentrations x.(t)
and z.(t) online. To jointly estimate these variables, we
incorporate them into an augmented five-dimensional state

Y1) = [we(t), 2e(t), hee (), hee(t) k()] . (3)

B. Estimator design

pe= (1

with A(t) =

In this section, we derive a recursive Bayesian estimator
for y(t) based on the EEG binary time-series. As all com-
ponents of y(t) are positive, we estimate its logarithm

2(t) = log y (1) = [20(t), 2e (1), Zee (t), zee(t), 20 ()] . (@)

After estimating z(t), we can find y(t) as y(t) = e*(®).

A recursive Bayesian estimator consists of a prior model
on the states and an observation model that relates the EEG to
these states. To make the adaptive algorithm robust under any

system parameter dynamics, prior random-walk models are
used for the system parameters z.. (), ze.(t) and z.o(t). The
two-compartment model (2) relates the drug concentration
states to the system parameters. We also take model noise
into consideration. We thus build the prior model as

z(t) = f(z(t = 1), u(t = 1)) + w(t = 1), (5)

where w(t) is modeled as additive Gaussian noise with mean
0 and covariance matrix W, and

’

f(Z, u) = [fl (Z, u)a fZ(Z)a Zcey Rec ZCO] 9
is a nonlinear function with

fi1(z,u) = log[(1 — AePee — Ae*e0)e* + Ae®ece®e + Au]
f2(z) = log[Ae*ece® 4 (1 — Ae*e)e].

The observation in the estimator is the EEG binary time-
series. The observation model assumes that the number of
suppressions, N, in a time interval A with at most N
suppressions, is binomially distributed with probability p;
(1). We estimate z(t) by finding the minimum mean-square
error (MMSE) state estimate at each time, which is given by
the mean of the posterior density p(z(t)|N1.¢).

As the prior model (5) and binomial observation model are
both nonlinear in the state z(t), we make a linear approxima-
tion to the prior model and a Gaussian approximation to the
posterior model. Denoting the posterior mean E(z(t)|N1.;)
by z,; and its covariance by Wy, , and the mean of the
one step prediction density p(z(t)|N1.¢—1) by 2,1 and its
covariance by Wy ;_;, estimator recursions are derived as:

Ztjt—1 = f(Zt—1|t—1,U(t —-1)) (6)
Wi 1 =FW,_ F +W (7)
N,— N ’
Zujy = 201+ Wy, {0, &(Ne = Npi) pt),o,o,o} (8)
pt(1 *pt)

Zi|t—1

;9

Zi|t—1

( 0 0 ) 0

W =W+ L0y 2
3x2 033

where [-], indicates the evaluation of the inside expression

5] .
at value a, F = [§l](z, 1, u(i-1))» Opxq is 2 p by g zero
matrix and

2o (B)ee(®)
o =2 (1-py), (10)
— NCE _ N:—Np: %p: _ _1-2p: 2:|
V= pp)  pe(lpe) [azgu) npyCt| (D
2
s = il + ze(t) — (1= pae()er= O], (12)

C. Controller design

We have three goals for the controller, which can be
quantified in a quadratic cost function. The main goal is
to take the brain concentration z.(t) close to the target
concentration level z*, which is specified by the desired BSP
level p* through z* = log((1 + p*)/(1 — p*)) (1). This is
done by minimizing ", (x.(t) — 2*)?. We also want to use
as little drug as possible, so we include Y, u(t)? in the cost
function. In addition, we enforce small drug infusion rate
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variations by penalizing the difference between the infusion
rate of the current time step and that of the previous time
step. Hence, we add a new term Y, (u(t) — u(t — 1))? to
the cost function. In summary, we form the cost function as

J =" (we(t) — ) + wpu(t)® + we(t)?,  (13)

where v(t) = u(t) — u(t — 1), and w, and w; are positive
quantities chosen depending on the desired system response.
At each time, the controller chooses u(t) that minimizes
this cost function. To solve the minimization problem, we
first define a new state X(t) = [z.(t), x.(t),u(t — 1)) and
use v(t) as the control variable. Then, we rewrite the cost as
J =3, % (t)Qx(t) + wsv(t)?, where Q is a 3 x 3 diagonal
matrix with diagonal elements [0,1,w,]. Given parameter
estimates kS5, k5t and k&' at time ¢, we use the linear
model in (2) and after simple manipulations, we derive
the state-space model for X(t) as %(t) = A% (t — 1) +
es ,

bu(t — 1), with Aest = AT b b = [A,0,1],
O1x2 1
where A°t is the system matrix in (2) evaluated at the
estimated parameters. Hence by using the standard LQR
solution and by transforming the origin of the state-space
to x*, we find v(t) = L (x(t) — x*¢5!), where x*¢5¢ =

/ . . . .
[fepa®, ¥, “ee 0 7*] | and Le is the Riccatti equation

u(t) = LN (XN (t) — 3 +u(t — 1),  (14)
where x5!(t) = [x¢5(¢t), x5! (t), u(t — 1)]’ is given by the

c €
estimates and the known previous drug infusion rate. Note
that u(¢ — 1) = 0 for ¢ = 1. We impose any rate constraints

by bounding the unconstrained optimized rate (14).

III. ONLINEID ALGORITHM AT STEADY STATE

In this section, we find sufficient conditions for the algo-
rithm to achieve desired reliable control at steady state.
Let’s consider the case where target brain drug concen-
tration is fixed at a specific level * and assume we have
an oracle algorithm that knows the underlying true system
parameters k!7“¢, kl'u¢ and kL5“©. The oracle steady-state
control, which is what we want to achieve, can be calculated
as
A

true
kce

x*. 15)

Uoracle =

Then, sufficient conditions for w(t) = urqecie are found as

est 1.est true .true
kec ch _ kec ch

fest ftrue ’ (16)

Tt (t) = a*, (17)
k,est

et (t) = kzzt x*. (18)
ce

The sufficient conditions are found as follows. First, these
conditions indicate that the estimator converges. Then, by
plugging (17) and (18) into (14), one can show that the
conttroltler also converges to a steady-state control us =
Fee %2, This combined with (15) and (16), indicates that
thecgteady—state control ug is identical to Uyrqele-

IV. RESULTS

Numerical experiments are conducted to evaluate the pro-
posed adaptive BMI algorithm. For illustration purposes, we
assume that the system parameters k. (t), kec(t) and keo(t)
are changing linearly with both the brain and central drug
concentrations, x.(t) and z.(t), at each time step as

kce(t) = (1 + O‘ceaje(t) + Bceﬁﬁc(t))kgea
kec(t) = (1 + Qece (t) + ﬁech(t))kgc?
keo(t) = (1 + acoze(t) + Beowe(t)) kS,

where k0., kU, and kU, are the initial parameters at the
beginning of the experiment, and e, Qecs Qcos Bees Bec
and . are noisy model parameters. But note that our
algorithm is a general adaptive approach that can apply to
any other parameter dynamics. This linear model, which also
incorporates adequate uncertainties, merely serves to test the
algorithm. In the experiments, we choose k2., k. and k%,
randomly from independent uniform distributions. The noisy
model parameters are set as qvce = 4 + WS, Qee = 4 + WL,
aco =4+ Wy, Bee = 0.004 + we,, Bee = 0.004 + w¢, and
Beo = 0.004 +wg,, where wg,, w¢, and w, are independent
model noises drawn from uniform distributions on [—2, 2],
and w¢,, w¢, and w¢, are independent model noises drawn
from uniform distributions on [—0.002, 0.002].

To assess the performance of OnlineID, we introduce an
oracle (Oracle) algorithm that knows the true underlying
parameters exactly, and a static-parameter (StaticP) algorithm
that is given the true parameters at the first time step (this
can be thought of as system identification) but never updates
the parameters. Thus, StaticP is actually the nonadaptive
algorithm introduced in [1]. Our OnlineID algorithm is only
given a set of random starting parameters. To assess the
effect of OnlinelD in reducing steady-state drug variation,
we set ws = 0.025 in OnlineID and introduce an elementary-
OnlineID (E-OnlinelD) algorithm that is identical to On-
lineID except that it uses ws; = 0. This means that E-
OnlineID doesn’t incorporate the novel cost term in the
controller. Oracle and StaticP also use ws = 0. We set
w, = 0.0005 in all of the above four algorithms.

We characterize the performance of the algorithms at
steady state by using the median prediction error (MDPE)
given by MDPE = median(e(t))/p*(t) x 100%, and the me-
dian absolute performance error (MDAPE) given by MDAPE
= median(|e(t)|)/p*(t) x 100%, where e(t) = p*(t) — p(t)
is the error between the desired BSP level p*(¢) and the
controlled BSP level p(t). The MDPE is a measure of bias
and the MDAPE is a measure of normalized error. We
measure the variation of the infusion rate by calculating
the normalized absolute error (NMAE) given by NMAE
= median(|d(¢)|)/mean(u(t)) x 100%, where d(t) = u(t)—
u(t — 1) is the difference between adjacent controls.

We compare the performance of the algorithms by apply-
ing them to 6 experiments, each consisting of an initial period
with a low target BSP level of 0.1 followed by a random
permutation of three target BSP levels (high 0.8, medium 0.5
and low 0.3). The initial low target level allows time for the
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Fig. 1. Control of burst suppression in two simulation experiments. In each
subfigure, the top panel shows the controlled BSP trace (black for Oracle,
red for OnlineID and blue for StaticP) and the desired time-varying target
level (green), and the bottom panel shows the corresponding drug infusion
rate administered by the BMI.

TABLE I
COMPARISON OF MDPE AND MDAPE OF DIFFERENT ALGORITHMS

Oracle OnlineID | E-OnlineID StaticP

MDPE 0.1935% | -0.5081% -0.5079% 9.4067%

MDAPE 1.5022% | 2.0709% 1.9389% 9.4067%
TABLE 11

COMPARISON OF NMAE OF ONLINEID AND E-ONLINEID ALGORITHM

OnlinelD
1.1695%

E-OnlinelD
5.0146%

NMAE

parameters to converge in OnlinelD before starting control
at higher levels. For each experiment, we simulate 100 trials
of the closed-loop system using different random starting
parameters. The results of 2 experiments are shown in Fig.
1. We find the average MDPE and MDAPE for the algorithms
over all trials (Table I) and then compute the NMAE of the
infusion rate differences for both OnlineID and E-OnlinelD
(Table II). Table I indicates that OnlineID has a bias that
is close to 0 and is less than 1/18 of the bias of StaticP.
The MDAPE of OnlinelD is comparable with Oracle, and
is much smaller than StaticP. This shows that OnlineID can
achieve both low bias and error at steady state, even when its
parameters are initialized randomly. In Table II, the NMAE
of infusion rate variation for OnlinelD is less than 1/4 of E-
OnlinelD and from Table I, OnlineID and E-OnlinelD have
comparable MDPE and MDAPE. This shows that the novel
cost term can effectively reduce infusion rate variations at
steady state at nearly no expense of bias or error. We also
find that for each experiment, OnlineID indeed satisfies the
three sufficient conditions (16), (17) and (18) asymptotically
(Fig. 2). It thus ensures that the generated control converges
to the oracle control (see bottom panels in Fig. 1).

V. CONCLUSIONS

We develop an adaptive BMI algorithm, termed OnlinelD,
for control of burst suppression in medical coma in face of
unknown and time-varying system parameters. By using this
algorithm, we can achieve reliable control without a system
identification session. The controlled BSP has both low bias
and error at steady state and makes reliable changes between
different target BSP levels. In addition, the infusion rates

Il
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Fig. 2. Sufficient conditions for reliable control. The figure shows that
OnlinelD algorithm tracks the three sufficient conditions described in (16)
(subfigure a), (17) (subfigure b) and (18) (subfigure c) in the experiment
corresponding to Fig. 1b. Red and black lines represent the left and right
hand side expressions in the sufficient conditions, respectively.

have small steady-state variations. We also derive sufficient
conditions for reliable control at steady state and verify that
the algorithm satisfies these sufficient conditions asymptoti-
cally. Our results suggest that the adaptive algorithm has the
potential to achieve robust control in experimental setups.
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