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Abstract— Palpation plays a critical role in medical physical
exams. Despite the wide range of exams, there are several
reproducible and subconscious sets of maneuvers that are
common to examination by palpation. Previous studies by
our group demonstrated the use of manikins and pressure
sensors for measuring and quantifying how physicians palpate
during different physical exams. In this study we develop
mathematical models that describe some of these common
maneuvers. Dynamic pressure data was measured using a
simplified testbed and different autoregressive models were used
to describe the motion of interest. The frequency, direction and
type of motion used were identified from the models. We believe
these models can a provide better understanding of how humans
explore objects in general and more specifically give insights to
understand medical physical exams.

I. INTRODUCTION

Palpation plays a critical role in many medical physical
exams, such as the clinical breast exam (CBE), digital rectal
exam (DRE) and the pelvic exam [1]–[3]. Extensive research
done by Klatsky and Lederman showed that when humans
explore objects they use a reproducible and subconscious
set of maneuvers, named exploratory procedures (EPs) [4],
[5]. In their studies they established links between the hand
movement and the desired knowledge acquired. The EPs
and their associated object properties are: lateral motion
(texture), pressure (hardness), static contact (temperature),
unsupported holding (weight), enclosure (global shape) and
contour following (global shape). While their studies focused
on general object exploration, these EPs can be used for
analyzing and understanding physical exams.

In our previous studies we used sensor-enabled medical
simulators in order to capture and quantify human palpation
during physical exams [6]–[8]. We were able to measure and
categorize different techniques used during these physical
exams [9], [10]. In this study we focus on the more basic
and fundamental work of developing mathematical models
of the EPs based on pressure data. More specifically, we
develop multi-variable auto regressive (MVAR) models of
lateral motion and pressure EPs, which play a critical role
in many clinical exams. The data for this current study was
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collected using a simplified testbed and palpation maneuvers
associated with those known to be typical of the CBE.

Current recommendations for the CBE suggest using cir-
cular motions when performing the exam [1]. In addition
when a suspicious mass is found its stiffness is typically
assed by applying pressure. Therefore, in this project we
focus on lateral motion and pressure. This approach is in
accordance with our previous studies which showed that
two of the most fundamental maneuvers commonly used by
medical examiners were rubbing (lateral motion) and tapping
(pressure) [10]. In this manuscript we divided the rubbing to
two groups: circular rubbing and linear rubbing. We believe
the former is recommended for the CBE and the latter is
common to regular texture recognition.

In the next section the mathematical models for the
different EPs will be presented. This will be followed by
the description of the data collected and the experiment per-
formed. Then the results will be presented and the suggested
approach will be discussed.

II. METHODS
A. MVAR Model

In this study three 2-dimensional MVAR models for
motion in the x− y, x− z and y− z planes were calculated.

A 2-dimensional MVAR model of order p is described by
the following equation:

un =
p

∑
l=1

Alun−l + εn (1)

where un is a 2 × 1 time series vector at time index n
representing the two components of motion being modeled,
εn is the noise at time index n and Al are the 2×2 MVAR
parameter matrices. It is assumed the data is zero mean, an
assumption that can be met by subtracting the mean of the
data from the measured data. A p = 1 order model was used
for circular rubbing while a p = 2 order model was used for
linear rubbing. Without loss of generality we will assume
that the rubbing motion occurs in the x− y plane.

B. Circular rubbing: model order = 1
One iterative method to draw a circle is using a circle

generating matrix [11], [12]. Given one point on the radius
of the circle, [x0,y0] and a step size h a circle can be drawn
using the next iterative algorithm:[

xn
yn

]
=

[
cos(h) −sin(h)
sin(h) cos(h)

]
·
[

xn−1
yn−1

]
(2)

The origin of the circle will be at [0,0] and the radius will
be
√

x2
0 + y2

0. In addition h governs the distance between
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adjacent points and N = 2π

h points will be required for a
complete circle. Since a p = 1 order model in the x−y plane
is given by [

xn
yn

]
= A1 ·

[
xn−1
yn−1

]
+ εn (3)

then (2) implies that circular rubbing is described by

A1 =

[
cos(h) −sin(h)
sin(h) cos(h)

]
(4)

where the rubbing frequency f0 is

f0 =
h · fs

2π
(5)

and fs is the sampling frequency. In the more general case
of an elliptic movement, the iterative generating matrix is

A1 =

[
cos(h)+ sin(h)sin(θ)cos(θ) · (α −1/α)

sin(h) · (cos2(θ)/α + sin2(θ) ·α)
(6)

−sin(h) · (sin2(θ)/α + cos2(θ) ·α)
cos(h))− sin(h)sin(θ)cos(θ) · (α −1/α)

]
where θ is the rotation of the ellipse and α is the ratio of
the major and minor axis. The unknown parameters can be
extracted according to

A1 ,

[
a1,1 a1,2
a2,1 a2,2

]
(7)

h = cos−1(
a1,1 +a2,2

2
) (8)

θ =
1
2

tan−1
(

a2,2 −a1,1

a2,1 +a1,2

)
(9)

α =
1
2

a2,1 −a1,2

sin(h)
+

√(
a2,1 −a1,2

sin(h)

)2

−4

 (10)

C. Linear rubbing: model order = 2

We start with a simple canonical form of linear motion
where the rubbing is described as a sinusoidal variation in
the x direction. That is

xn = sin(2π f0n/ fs) (11)

where f0 is the frequency of the rubbing in Hz and fs is the
sampling frequency.

In a similar manner to the circular motion, an iterative
sinusoidal motion generating function is defined as

xn = a1xn−1 +a2xn−2 (12)

where the amplitude and phase of the sine is determined
by the initial conditions x0 and x1 . The coefficients a1 and
a2 control the step size and are given by a1 = 2cos(h) and
a2 =−1. As before N = 2π

h points are needed to finish one
cycle so f0 = h · fs/2π expresses the rubbing frequency as a
function of the step size.

Rotation of (12) to linear rubbing at an angle θ with
respect to the x-axis gives the p = 2 order model in the
x− y plane [

xn
yn

]
= A1 ·

[
xn−1
yn−1

]
+A2 ·

[
xn−2
yn−2

]
+ εn (13)

where

A1 = R−1
[

a1 0
0 0

]
R, A2 = R−1

[
a2 0
0 0

]
R (14)

and R is the rotation matrix

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(15)

Note that (14) expresses both A1 and A2 as the product of
a matrix with orthonormal columns, a diagonal matrix, and
the transpose of the first matrix. Therefore, we can regard
these expressions as eigendecompositions of the matrices A1
and A2. The eigenvectors define the rotation angle θ and
the eigenvalues the rubbing frequency f0. Once we estimate
the entries of the matrices A1 and A2 from the data, we
use eigendecomposition to identify the rotation angle and
rubbing frequency.

Due to noise in the estimated A1 and A2, the eigenvectors
of each matrix may differ and not form a rotation matrix, and
there may be two nonzero eigenvalues. We estimate the angle
using the eigenvector associated with the largest eigenvalue.

D. Error Calculation and Model Selection

Both MVAR models were calculated for all test maneuvers
and the model with the minimum error was chosen as best
representing the motion. The error for each model was
calculated in the following way

• p = 1 - A dense ellipse was generated using the model
parameters and a measured data point. This was done
using the ellipse generating matrix and decreasing the
step size h by a factor of 10. For every measured data
point the error was given as the distance of the point to
the closest point on the dense ellipse.

• p = 2 - The error was calculated as the distance of the
measured data from the line equation produced by the
model .

Due to the symmetric nature of the inverse of harmonic
functions (e.g. cos−1 ) there is ambiguity regarding the angle
of the model. For ellipsoidal motion the angle is either θ

or θ + π/4 and for linear motion the angle is either θ

or θ + π/2. Therefore, errors for both angle options were
checked. For a given motion the model chosen was the one
that minimized the square error. Note that since the motion
was symmetric around the origin there is no difference
between θ and θ + π and therefore θ was constrained to
0 ≤ θ < π .

E. Exploratory procedures selection

While rubbing can be modeled as a line or a circle in
the x− y plane, tapping typically involves linear motion in
the x − z and y − z planes. For example canonic rubbing
is described by xn = sin(2π f0n/ fs), yn = 0 and zn = 0
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while canonic tapping is described by xn = 0, yn = 0 and
zn = sin(2π f0n/ fs). Therefore tapping and rubbing can be
differentiated by analyzing the angle given by a model in
the x− z plane. Thus for each motion, models in all three
planes were calculated. If the angle in both x− z and y− z
was above 80◦ then taping was selected, otherwise rubbing.
Note that if there is no motion in two axes, for example y
and z in the canonic rubbing, then the matching model (y−z)
will be noisy and meaningless. Therefore both models had
to satisfy this criteria for the motion to be tapping.

The MVAR model for each sample was computed by mini-
mizing the squared error over the preceding 30 samples. Then
each sample was categorized as tapping, circular rubbing or
linear rubbing based on the error analysis described in the
previous section. A majority vote was used to declare which
procedure was associated with each exploration.

III. DATA

A. Participants

Four participants (2 male 2 female, average age 32) gave
informed consent to the protocol approved by the University
of Madison Institutional Review Board.

B. Testbed preparation and apparatus

The testbed was constructed from a two-component rubber
silicon (Ecoflex R©0030, Smooth-On Inc., Shore 00-30 hard-
ness) mixed in a 1:1 ratio . The same family of materials is
used in our breast simulators [8]. The testbed was a 200x200
mm flat surface, 8 mm thick, placed on a pressure mapping
system (Fig. 1). The pressure mapping system included a
250 x 250 mm ultra-thin, tactile pressure sensor, comprised
of 1,936 individual sensing elements uniformly distributed in
a 44 x 44 matrix (Tekscan R©Boston, MA). The sensor map
was connected to the computer’s USB using a designated
data acquisition handle. Data were sampled at 90 Hz and
stored for offline analysis. In addition video recordings of
hand movement were acquired.

C. Preprocessing of pressure data

The pressure data were transformed to the finger location
in space before modeling the data. Using a right handed
coordinate system, let the z direction be the normal to the
testbed. The x − y position of the finger was calculated
based on the center of force. First the pressure map was
up-sampled by a factor of 5 using the nearest neighbor
algorithm, resulting in a 220× 220 image. The image was
filtered using a 17×17 Gaussian filter and the pixel with the
maximum value was taken as the center of force.

The actual displacement in the z direction depends on the
physical properties of the testbed. In thick and soft testbeds
larger displacements will be measured for the same amount
of force applied. Nevertheless, for modeling the type of
motion, the force applied is more important than the actual
displacement of the finger. Therefore force was treated as
virtual motion in the z direction. The measured force was
divided by an empirical constant which caused the z direction

Fig. 1. Silicon based testbed with camera and sensor map, showing the
templates used to guide motion.

virtual motion to be in the same order of magnitude as the
x− y direction motion.

Since initial analysis showed that on average the palpation
frequency was less then 3 Hz, data were down-sampled to
10 Hz before modeling.

D. Experiment

Participants were asked to explore by rubbing and tapping
the testbed. An outline for the rubbing pattern was depicted
on the testbed in order to allow quantification of the rubbing
exploration. Three lines were drawn at angles 0◦, 45◦ and
90◦. In addition three ellipses were drawn with major axes
in the same directions. The lines were 4 cm long and the
major and minor axes of the ellipses were 2 and 4 cm long,
respectively (Fig. 1).Tapping was performed in an arbitrary
location on the testbed. For each exploration participants
were instructed to go back and forth between 5-15 times over
the outlined shape trying to keep a constant frequency. Each
pattern was explored twice and participants were asked to
perform one exploration in what they consider a comfortably
slow manner and one in a comfortably fast manner, so a
range of frequencies can be measured.

IV. RESULTS

A total of 8 tapping explorations, 24 linear rubbing explo-
rations and 24 circular rubbing explorations were performed.
They included 446,1746 and 2184 data points respectively.
On average 97% of tapping data points , 99% of linear
rubbing data points and 94% of circular rubbing data points
were correctly classified. All explorations were correctly
classified based on the most frequent data point type in that
exploration. A plot of the rubbing direction estimation is
shown in Fig. 2. Video data was utilized to validate fre-
quency estimation by counting the number of back and forth
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Fig. 2. The exploration direction estimated by the model as a function of
the template direction.

Fig. 3. The exploration frequency estimated by the model depicted as a
function of the frequency based on video analysis.

movements and the time they took. An average frequency
was calculated from the ratio. This was compared to the
average frequency extracted from the models (Fig. 3). The
average value of the ellipse axes ratio α was 0.52±0.045;
the individual estimated values are depicted in Fig 4.

V. DISCUSSION

In this study several basic maneuvers used for manually
exploring objects were modeled using MVAR models. Two
fundamental models of linear motion and circular motion
were developed. Differentiating between linear rubbing, cir-
cular rubbing and tapping was demonstrated by applying
them in different coordinate planes. Very good classification
was achieved both of the overall exploration and of the ex-
ploration for each data point. The models inherently provide
information such as palpation frequency and direction in ad-
dition to automatic classification of exploratory maneuvers.

We evaluated the accuracy and usefulness of these models
using constrained motion. Once established, these models
can be used for general motion, and provide insight to
how people explore objects. Besides the general interest in
human touch, this information is valuable for understanding
and potentially improving different medical physical exams.
Questions such as palpation technique, direction and fre-

Fig. 4. Model estimated ellipse axis ratio.

quency can be resolved using these models. In addition
comparison between the palpation technique of the general
population and of medical experts can be performed. Since
a new model is fit to each new time sample, this approach
can also be used to characterize more complex motions and
dynamically follow transitions between different EPs and
multiple rubbing directions.
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