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Abstract— Development of ECG delineation algorithms has
been an area of intense research in the field of computa-
tional cardiology for the past few decades. However, devising
evaluation techniques for scoring and/or merging the results
of such algorithms, both in the presence or absence of gold
standards, still remains as a challenge. This is mainly due
to existence of missed or erroneous determination of fiducial
points in the results of different annotation algorithms. The
discrepancy between different annotators increases when the
reference signal includes arrhythmias or significant noise and
its morphology deviates from a clean ECG signal. In this work,
we propose a new approach to evaluate and compare the results
of different annotators under such conditions. Specifically,
we use sequence alignment techniques similar to those used
in bioinformatics for the alignment of gene sequences. Our
approach is based on dynamic programming where adequate
mismatch penalties, depending on the type of the fiducial
point and the underlying signal, are defined to optimally align
the annotation sequences. We also discuss how to extend the
algorithm for more than two sequences by using suitable data
structures to align multiple annotation sequences with each
other. Once the sequences are aligned, different heuristics are
devised to evaluate the performance against a gold standard
annotation, or to merge the results of multiple annotations when
no gold standard exists.

I. INTRODUCTION

The analysis of ECG signals is of great importance in
the detection of cardiac anomalies. The advances in signal
processing and machine learning techniques have resulted in
numerous automated ECG beat detectors and classifiers in
the past few decades. Evaluating the performance of such
algorithms requires devise of suitable scoring functions that
compare the resulting annotation sequences with a gold stan-
dard or with other existing annotation sequences. However,
the existence of missed or erroneous determination of fiducial
points in the results of different annotators, coupled with the
finite accuracy of measurement systems, makes comparison
of the annotation sequences a challenge.

In practice, root mean square error (RMSE) and Pearsons
correlation coefficient are widely used measures [1] to com-
pare the results of different annotators with the reference
sequence, in the presence of a gold standard. On the other
hand, different deterministic (such as mean, median, and
majority voting) or probabilistic (such as bayesian voting)
methods [1], [2] are applied to merge the results of different
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annotators and estimate the true (hidden) labels, in the
absence of a gold standard.

The implicit assumption in all these methods is that
the sequences are aligned with each other; hence, the
problem is formulated as having a data set D =

{y(1)i , y
(2)
i , · · · , y(N)

i }Li=1 consisting of N different annota-
tion sequences {y(j)i }Li=1, j = 1, · · · , N of length L, with
the goal of comparing the annotators with or estimating the
gold standard sequence {y∗i }Li=1.

In this work, we discuss how different annotation se-
quences can be optimally aligned using a sequence alignment
technique similar to the one used for aligning biological
sequences [3]. Once annotation sequences are aligned, a
scoring function is devised to measure the similarity between
annotation sequences with their corresponding reference re-
sponses. To show the importance of sequence alignment,
the performance of the devised scoring function is further
tested against an RMSE similarity measure in scoring the
performance of automated fetal QRS (fQRS) annotators. The
final results indicate that sequence alignment enables more
robust evaluation of the performance of ECG annotators.
Finally, the concept of sequence alignment is extended to
multiple sequences by using a union-find data structure. This
provides a means to merge the information provided by mul-
tiple annotators and estimate the true (hidden) annotations
from the merged information of the annotation sequences.

In what follows, the notion of “optimal alignment” is
first defined for two DNA sequences and the dynamic
programming approach used to find an optimal alignment
between two such sequences is described in Section II.
In Section III, gene sequences are compared with ECG
annotation sequences, and the alignment methodology used
for aligning gene sequences is modified accordingly to find
the optimal alignment of annotation sequences. Finally, the
importance of sequence alignment prior to measuring the
similarity between multiple annotation sequences is shown
in Section IV.

II. BACKGROUND

In this section, we define the concept of “global align-
ment” for two gene sequences and describe the method-
ology for computing their optimal alignment via dynamic
programming. Next, we briefly mention how the pairwise
sequence alignment methodology can be extended to multi-
ple sequence alignment.

Consider the case of two gene sequences X = X1 · · ·Xm

of length m, and Y = Y1 · · ·Yn of length n, defined on a
finite alphabet set of Σ = {A,C,G, T}; i.e., Xi and Yj ∈
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Σ,∀1 ≤ i ≤ m and 1 ≤ j ≤ n. Informally, an alignment of
two sequences X and Y , denoted by X� and Y �, is obtained
by first inserting gaps either into or at the ends of X and
Y such that the length of the sequences match (i.e., |X�| =
|Y �|), and then establishing a one-to-one relation between the
elements or gaps at the corresponding indices of the aligned
sequences.

While many different alignments exist between two se-
quences, optimal alignment is defined with respect to an
alignment quality and with the goal of minimizing a cost
function. Let σ(x, y) be the weight of the alignment of
elements x and y in the set (Σ ∪ {−}), where {−} is the
character used to denote gaps in the aligned sequences. The
total cost of an alignment is then defined as

W (X�, Y �) =

|X�|∑
l=1

σ(X�l , Y
�
l ).

The optimal alignment and the minimum cost of aligning
X and Y , with respect to a given weight function σ, can
then be formulated as
X�

opt, Y
�

opt = argmin
X�,Y �

{W (X�, Y �)|(X�, Y �) is alignment of

(X,Y )}, and
D(X,Y ) = min

X�,Y �
{W (X�, Y �)|(X�, Y �) is alignment of (X,Y )},

(1)

respectively.
For a given weight function σ(·), the algorithm known

as the Needleman-Wunsch algorithm can be used to find the
optimal alignments of equation (1) via dynamic program-
ming [3]. The key insight to using the dynamic programming
framework is that the optimal alignments can be computed
in a step-wise fashion by making locally optimal choices
based on the results from smaller subproblems. Specifically,
the algorithm defines the minimum cost of subsequences
X1···i = {X1, · · · , Xi} and Y1···j = {Y1, · · · , Yj} as partial
solutions and creates a matrix of these partial solutions,
referred to as the alignment matrix A. Hence, the alignment
matrix A ∈ R(|X|+1)×(|Y |+1), and Ai,j = D(X1···i, Y1···j).
Arguing by contradiction, it can be shown that the following
recursive relation holds for the alignment matrix A:

Ai,j= min

 Ai−1,j−1 + σ(Xi, Yj)
Ai−1,j + σ(Xi,−)
Ai,j−1 + σ(−, Yj)

, for
1 ≤ i ≤ |X|,
1 ≤ j ≤ |Y |

with initial conditions: (2)

Ai,0=

i∑
k=1

σ(Xk,−) , and A0,j =

j∑
k=1

σ(−, Yk).

Once the alignment matrix is filled, A|X|+1,|Y |+1 is,
by definition, equal to the minimum alignment cost of X
and Y . Furthermore, the optimal alignments X�opt and Y �opt
can be found by backtracking on the alignment matrix A.
To this end, pointers can be assigned to each matrix cell
as their values are being computed. The direction of the
pointer at each cell (i, j) indicates which neighboring cell
increased the alignment cost of Ai,j by the least amount,

and determines the type of the alignment (occurrence of a
match or insertion/deletion of a gap) at positions i and j of
X and Y , respectively.

The weights σ(x, y) used for comparing DNA sequences
are derived from computing the log-likelihood of co-
occurrence of different pairs of nucleotides (x, y) in a
training set of aligned sequences [3]. However, in many
cases, it is common to assume more simplified functions
such as,

σ(x, y) =

 σmis , if x 6= y, x, y ∈ Σ
σgap , if x or y ∈ {−}
0 otherwise

, (3)

for some positive constants σmis and σgap.
The above dynamic programming framework can be di-

rectly generalized to align N > 2 annotation sequences
{X(i)}Ni=1. Under such scenario, the alignment matrix A ∈
R(|X(1)|+1)×(|X(2)|+1)×···×(|X(N)|+1), and finding the opti-
mal alignments requires computation of the cost for all of
the

∏N
i=1 |X(i)| different cells of the alignment matrix A.

Moreover, calculating the cost of each cell requires determi-
nation of the minimum over 2N−1 different combinations of
gaps. Assuming all annotation sequences are of roughly the
same length L̄, the time complexity of the multidimensional
dynamic programming alignment is O(2N L̄N ) [3].

The Needleman-Wunsch algorithm is closely related to
the Levenshtein distance [4], used in computer science for
calculating the minimum “edit distance” between two strings,
and to the Dynamic Time Warping (DTW) algorithm [5],
primarily used in speech processing for measuring similarity
of temporal signals.

III. METHOD

A. Case I: Two annotation sequences

While a DNA sequence consists of a set of characters from
the finite set Σ, an ECG annotation sequence is comprised
of a set of indices corresponding to the location of a fiducial
point (e.g. the location of QRS complexes) in the ECG signal
over a certain period of time. Hence, the time indices are
from the infinite set of real numbers. However, due to the
pseudo-periodic nature of the ECG signals, a positive time
difference exists between consecutive fiducial points. This
property allows defining appropriate weight functions for the
alignment of ECG annotation sequences. One such weight
function could be in the form of

σ(t1, t2) =
|t1 − t2|
tol/2

, and σgap = 1, (4)

where tol is the maximum acceptable amount of mismatch
(in seconds) between two aligned indices. In other words,
any two time points which are matched in the aligned
annotation sequences contribute to the total cost by a weight
proportional to their time difference, and any time point
reported by only one of the annotators and missed by the
other contributes by a weight of +1 to the alignment cost.
The maximum mismatch parameter, tol, depends on the type
of the fiducial point and the properties of the underlying ECG
signal. For example, in the case of annotating fetal QRS
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(fQRS) locations, a time difference of 20 ms between the
correct location and the annotator’s reported location might
be acceptable, and time differences above 100 ms might not
be acceptable. Hence, tol = 100 ms would be an appropriate
choice for this example.

Once a suitable weight function σ(·) is defined, the
Needleman-Wunsch algorithm can be used for the alignment
of annotation sequences similar to aligning DNA sequences.

In order to show the importance of sequence alignment
prior to using any heuristic for comparing the annotation
sequences, consider the scoring function used in the Phys-
ioNet/CinC challenge 2013 [6] for annotating the location
(time indices) of fQRS complexes in one-minute fetal ECG
(fECG) recordings obtained from a set of electrodes placed
on the mother’s abdomen. The reference fQRS sequences for
a small set of signals were available to the competitors as
part of a training set.

Let X and R refer to a fQRS annotator and its corre-
sponding reference sequence for a data set in the challenge
training set, respectively. Furthermore, let Xaligned and Raligned
denote the aligned sequences using the Needleman-Wunsch
algorithm with a weight function similar to (4). Then the
following scoring function would provide a consistent and
meaningful measure for comparing the two sequences:

Sconsensus= fs ·
(√√√√ 1

nmatch

∑
matched
indices i

(Raligned[i]−Xaligned[i])2

+
ngap

|R|
· k · tol

)
, for some k > 1, (5)

where nmatch and ngap refer to the total number of matches
(two time indices matched together) and gaps (a time index
matched with a gap) in the aligned sequences, and fs denotes
the sampling frequency of the underlying ECG signal. The
first term in the above scoring function calculates the RMSE
between the matched indices of X and R, and the second
term assigns a fixed amount of penalty k · tol to each index
that was matched with a gap. The coefficient k > 1, so that
the penalty assigned for gaps is greater than the maximum
allowable amount of mismatch between the matched indices.
Note that by aligning the two sequences using the weight
function (3), a matched pair of indices can have a time
difference up to the mismatch tolerance tol, and indices in
either sequence which do not find a corresponding index
(in the other sequence) within their tol-margin are matched
with a gap. Therefore, a gap either represents an index in
the reference sequence that was not detected by annotator
X , or an index that was erroneously detected in X and has
no corresponding index in R.

The scoring function Sconsensus defined in equation (5)
is used in Section IV to compare and score the similarity
between fQRS annotation sequences and their corresponding
reference responses. The scoring function Sconsensus is further
compared with the scoring function Schallenge which was used
in the PhysioNet/CinC challenge 2013 to score the accuracy
of the annotation sequences by computing the mean square
error without prior sequence alignment [6].

B. Case II: Multiple annotation sequences

In the absence of a gold standard, comparison of multiple
annotation sequences (from different annotators) can provide
information about the underlying true labels or locations of
fiducial points [1]. In order to avoid the high time complexity
of the multiple sequence alignment technique outlined in
Section III, we propose instead, to perform pairwise sequence
alignment between any two annotation sequences in the
set, and use a union-find data structure (also known as the
disjoint-set data structure) to merge the results of pairwise
matches together.

The union-find data structure keeps track of any par-
titioning of a set into a disjoint set of groups with fast
implementation of the following operations,

• find(x): returns the name of the group element x is
in; thus, x and y are in the same group if and only if
find(x) = find(y),

• union(G1, G2): merges two groups G1 and G2, and
• makeUnionFind(S): returns a data structure where

each element of set S is in a separate group.

Fast implementation1 of the union-find data structure for
a set S of size n has a time complexity of O(n), O(1),
and O(log n) for the makeUnionFind, union, and find
operations, respectively [7]. Implementation details of the
union-find data structure are out of the scope of this work
and are not covered here.

In order to use the union-find data structure for the
alignment of N annotation sequences, set S is initialized
to be the union of all annotation indices reported by the N
different annotators such that

S =
{

(i : X
(i)
j ),∀i ∈ {1, · · · , N} and j ∈ {1, · · · , |X(i)|}

}
.

Next, pairwise sequence alignment is performed, using the
Needleman-Wunsch algorithm, for each pair of annotation
sequences and the matched indices of the aligned sequences
are grouped together using the union-find operations previ-
ously described. This process is detailed in Algorithm 1.

Using Algorithm 1, a total of O(N2) pairwise sequence
alignments must be performed; assuming all sequences have
roughly same length L̄, this corresponds to a time complexity
of O(N2L̄2). Moreover, each union-find operation takes
O(log(NL̄)), which amounts to a total time complexity
of O(N2L̄ log(NL̄)). Finally, the initialization of the data
structure takes O(NL̄). Therefore, the total time complexity
of Algorithm 1 is O(NL̄+N2L̄ log(NL̄) +N2L̄2), which
is mostly dominated by the cost of the pairwise alignments.
Comparing the exponential time complexity of the multi-
dimensional dynamic programming alignment (mentioned
in Section II) versus the polynomial time complexity of
the alignment via union-find data structures, the latter is a
much more efficient algorithm for the alignment of multiple
annotation sequences.

1The reported time complexities correspond to the forest-based imple-
mentation of the union-find data structure. Faster implementation via the
path compression technique is not mentioned here.
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Algorithm 1 Multiple sequence alignment using the union-
find data structure
Input: a set of N annotation sequences {X(i)}Ni=1, and maximum accept-
able mismatch tol for pairwise alignments
Output: All the matched elements between the annotation sequences in the
form of a union-find data structure.
Comments: The seqAlign function takes two annotation sequences,
together with a maximum acceptable mismatch parameter, and aligns the
sequences using the Needleman-Wunsch algorithm.

1: S ← makeUnionFind
({

(i : X
(i)
j ), ∀i ∈ {1, · · · , N} and j ∈

{1, · · · , |X(i)|}
})

2: for i in {1, · · · , N − 1} do
3: for j in {i+ 1, · · · , N} do
4: X

(i)
aligned, X

(j)
aligned ← seqAlign(X(i), X(j), tol)

5: match index ←
{
k ∈ {1, · · · , |X(i)

aligned|}
X(i)

aligned,k 6=

{−} and X
(j)
aligned,k 6= {−}

}
6: for k in match index do
7: G1 ← find

(
(i : X

(i)
aligned,k)

)
8: G2 ← find

(
(j : X

(j)
aligned,k)

)
9: if G1 6= G2 then

10: union(G1, G2)
11: end if
12: end for
13: end for
14: end for
15: return S

IV. RESULTS AND DISCUSSION

Once the sequences are aligned, different heuristics can be
devised to compare the aligned sequences with each other.
The scoring function Sconsensus defined in equation (5), for
example, uses both the RMSE measure and the number of
gaps between the aligned annotation sequences to score the
similarity of an annotator X with its reference sequence R.

Fig. 1 and Fig. 2 compare the overall performance of
Sconsensus (with parameters tol = 100 ms and k = 2) and
the scoring function used in the PhysioNet/CinC challenge
2013 [6], denoted by Schallenge, to measure the similarity
between a fQRS annotator and its reference response. As
described in Silva et al. [6], Schallenge was calculated by
obtaining uniformly sampled fetal heart rate (FHR) estimates
of the annotation and reference sequences using integral
pulse frequency modulation (IPFM), and reporting the mean
square error of the two estimates as the similarity score
between the two annotation sequences.2

Both Sconsensus and Schallenge aim to measure the closeness
of an annotator sequence to a reference sequence and hence
lower scores represent higher amount of similarity. Note
that the two scoring functions have different ranges, and
the scores assigned by them are not comparable with each
other. The goal of this comparison, however, is to test the
sensitivity and consistency of each scoring function with
itself under different scenarios, and to show the importance
of sequence alignment prior to measuring the similarity
between annotation sequences.

2This refers to the FHR time-series estimation method used in Events 1
and 4 of the Physionet/CinC challenge 2013. For more information, refer
to Silva et al [6].

Fig. 1 depicts a very simple scenario where the annotation
sequence X is exactly similar to the reference sequence R,
except at five consecutive indices where annotator X was
not able to detect the location of fQRS peaks, and hence
those indices are not present in X . The location of gaps are
different in Fig 1(a) and 1(b), but the total number of exact
matches is the same in both cases. However, while Sconsensus
assigns a similar score to both cases, Schallenge assigns two
very different scores; this sensitivity to location of gaps is not
desirable for scoring functions which are devised to measure
the overall similarity between two sequences.

Fig. 2 compares the consistency of the two scoring
functions in measuring the similarity between an annotator
sequence with its corresponding reference sequence. As
indicated in the figure, while there are a total of 10 gaps in the
aligned sequences of Fig. 2(a), Schallenge has assigned a worse
score for this annotator compared to Fig. 2(b) and 2(c), which
have a total of 33 and 59 gaps in their aligned sequences,
respectively. Also note that while there is a huge discrepancy
between the annotator of Fig. 2(c) and its reference sequence,
Schallenge has assigned a better score for this annotator than
those of Fig. 1. However, Sconsensus correlates with the total
number of gaps associated with missed and erroneously
detected peaks in the fECG signals.

0 10 20 30 40 50 60

(a) ngap=5, Schallenge = 41.35, Sconsensus = 6.90

0 10 20 30 40 50 60

Time (sec.)

(b) ngap=5, Schallenge = 118.32, Sconsensus = 6.90

Fig. 1. Comparing the insensitivity of the two scoring functions Schallenge
and Sconsensus to the location of gaps between an annotator sequence X and
its reference sequence R. The reference sequence is the same in both cases
(a) and (b), but the annotator sequence X = R \ {R10, · · · , R14} in (a),
and X = R \ {R110, · · · , R114} in (b). In both figures, the location of
matches between R and X (along the time axis) are highlighted by green
lines, and the location of gaps (where the annotator was not able to detect
the peaks) are highlighted by red lines. Although the number of matches
and gaps between R and X are the same in both cases, Schallenge assigns
two very different scores to them. However, Sconsensus is the same for both
cases.

To show the performance of the union-find data structure
in aligning multiple sequences in the absence of a gold
standard, consider the following example in which the set
of integers between 1 and 9 was used to generate five
different sequences. In each sequence, some numbers were
removed from the sequence to resemble the missing indices
of annotation sequences. Moreover, a random noise between
[−0.2, 0.2) was added to each remaining number to simulate
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0 10 20 30 40 50 60

(a) ngap=10, Schallenge = 118.60, Sconsensus = 24.91

0 10 20 30 40 50 60

(b) ngap = 33, Schallenge = 6.26, Sconsensus = 72.31

0 10 20 30 40 50 60

Time (sec.)

(c) ngap=59, Schallenge = 44.34, Sconsensus = 122.69

Fig. 2. Comparing the consistency of the two scoring functions Schallenge
and Sconsensus in scoring the similarity between an annotator sequence X
and its reference sequence R. In all figures, the location of matches between
R and X (along the time axis) are highlighted by green lines, the location
of gaps where the annotator was not able to detect the peaks are highlighted
by red lines, and the locations of gaps where the annotator has erroneously
detected a peak is highlighted in blue. While it can be visually confirmed
that the similarity between X and R decreases from (a) to (c), this is not
reflected in the scorings of Schallenge.

the existence of noise in the annotations. Fig. 3(a) shows the
resulting set of sequences. Next, the sequences were aligned
via pairwise sequence alignment with mismatch tolerance
tol = 0.2, and the matched results were grouped together
using a union-find data structure. Fig. 3(b) and Fig. 3(c)
show the data structure before and after the alignments,
respectively. After the alignments, the size of each group
in the data structure represents the amount of consensus
between the annotators about existence of a true (hidden)
annotation point x∗ ∈ (xmin − tol, xmax + tol), where xmin
and xmax refer to the minimum and maximum values reported
by annotators inside that group.

Once the sequences are aligned, different “voting” heuris-
tics (such as mean, median or Bayesian voting) can be
applied to merge the results of the aligned sequences and/or
assess the “reliability” of each annotation algorithm.

V. CONCLUSIONS

In this work, we discussed the importance of sequence
alignment prior to performing any comparison between a
set of annotation sequences. This can show up in the form
of scoring the “closeness” of an annotation sequence to a
gold standard, or in the form of performing consensus or
inference on a set of annotation sequences in the absence
of a gold standard. We particularly discussed how the
Needleman-Wunsch sequence alignment technique can be
applied to different annotation sequences by devising proper

X
(1)

: 0.993,3.928,4.845,5.994,6.954 

X
(2)

: 6.116,7.082,7.981

X
(3)

: 0.886,1.994,2.859,4.138,5.055,5.926,7.139

X
(4)

: 2.806,3.949,5.103,5.847,7.144,7.866

X
(5)

: 2.161,3.130,4.095,5.028,5.999,7.100,8.006,9.053

(a) Set of sequences

!"#$%&!' !"!$%()'#"!$)#*' #"*$+##' !"!$&&&' !"*$+%%'

,"%$))-'

!"($+-+'#"($)%-'

,"#$+,)' ,"!$%!!'("-$++-' ("*$%)('

#"*$)--' !",$+,%'#",$&#&' #"!$+%,'

,"!$&(-' ,"*$+,&'

!")$%%-'

+"%$&&,' ,"+$&&#' ,"($)!&'+",$&()' +"#$)#!' +"!$&&#' +"-$&!#' ("*$&)+'

#"&$%!,'

(b) Initialization

!"#$%&!' !"!$%()' #"!$)#*' #"*$+##'

!"!$&&&' !"*$+%%'

,"%$))-' !"($+-+' #"($)%-' ,"#$+,)' ,"!$%!!' ("-$++-' ("*$%)(' #"*$)--'

!",$+,%' #",$&#&' #"!$+%,' ,"!$&(-' ,"*$+,&' !")$%%-'

+"%$&&,' ,"+$&&#' ,"($)!&' +",$&()' +"#$)#!' +"!$&&#' +"-$&!#' ("*$&)+' #"&$%!,'

1 2 3 4 5 6 7 8 9 

(c) Final result

Fig. 3. An example of using a union-find data structure to merge the
information of multiple annotation sequences and cluster the corresponding
indices together. (a) A set of five sequences with noisy readings from
0 to 9. (b) Initialization of the union-find data structure. At first, each
annotation index is in a separate group. (c) Pairwise alignments establish
index correspondences, and the corresponding indices are clustered in the
same group.

weight functions. Finally, we compared the scoring function
used in the PhysioNet/CinC challenge 2013 with a scoring
function devised based on the sequence alignment results
and discussed why the latter provides more consistent and
meaningful scores for comparing ECG annotation sequences
with their corresponding gold standards. A more detailed
analysis and discussion of possible applications of the de-
vised approach for measuring consensus among multiple
ECG annotation sequences are left for future work.
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