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Abstract— Biopsy remains the gold standard for the diagnosis
of chronic liver diseases. However, the concordance between
readers is subject to variability causing an increasing need of
objective tissue description methods. A complete framework has
been implemented to analyze histological images from any kind
of tissue. Based on the feature selection approach, it computes
the most relevant subset of descriptors in terms of classification
from a wide initial list of local and global descriptors. In
comparison with equivalent methods, this implementation is
able to find lists of descriptors which are significantly shorter
for an equivalent accuracy and furthermore it enables the
classification of slides using combinations of global and local
measurements. The results have pointed that it could reach an
accuracy of 82.8% in a human liver fibrosis grading approach
by selecting 6 descriptors from an initial set of 258 global and
local descriptors.

Index Terms— framework, fibrosis, feature selection, support
vector machines, quantification

I. INTRODUCTION

Biopsy is currently the gold standard to diagnose the
amount of inflammation (also called grade) and fibrosis (also
called stage of the disease) in chronic liver diseases. To
evaluate the stage, two semi-quantitative scores are used by
pathologists in every day practice: Metavir [1] and Ishak
scores. There are many limitations to the liver biopsy:
concordance between senior reader and junior reader is fair
(κ < 0.6), concordance between two senior readers is fair to
good according to the level of fibrosis (fibrosis is classified in
5 stages in the Metavir score: no fibrosis (F0), low fibrosis
(F1), moderate fibrosis (F2), severe fibrosis (F3), cirrhosis
(F4)).

These difficulties illustrate an increasing need to define
objective tissue description methods. In image analysis ob-
jective approaches are implemented and compared to the gold
standard. This leads to efficient techniques that allow feature
extraction and quantification from histological images.
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A complete feature-selection framework has been imple-
mented to make it as easy and flexible as possible to analyze
histological images from any kind of tissue. The framework
is used in an original manner to characterize liver fibrosis
stage with morphological, structural and textural global and
local features.

II. PREVIOUS RESEARCH

The feature selection approach is more and more popular
in histology image analysis. Saeys et al. [2] put forward the
two most common difficulties of its application to histology:
large input dimensionality and small sample size. To deal
with these problems, several solutions have been tested as
using multiresolution approaches or improving the subset
search algorithm. Kong et al. [3] present an automated
grading algorithm of neuroblastoma based on multiresolution
approach of the bag-of-features which can deal with high
resolution images. As shown by Tabesh et al. [4], the feature
selection method accuracy can reach 96.7% on classification
of histological images of prostate according to the Gleason
grading reference. The possibilities around this technique
have been widely explored by Caicedo et al. [5] and the main
advantage of their method is its adaptiveness to the particular
contents of the image collection through the automated
construction of a codebook [6]. Later, some work has been
done on improving the algorithms as Ozçift [7] who uses
Random Forest algorithm instead of the classical but efficient
SVM algorithm [8], DiFranco et al. [9] who show how to
increase the heat-map coherence using spatial filters and
Raza et al. [10] who increase performance combining scale
and rotation invariance for renal cell carcinoma subtype
classification.

III. APPROACH

A. Principle

The framework takes advantage of statistical learning and
classification methods (Fig. 1). Thus, the results can be used
for histology image segmentation and classification.

To this end, numerous morphological, textural and struc-
tural features are extracted from these images. Let N be
the initial number of descriptors (di)i∈[1,N ] (more than 200
kind of descriptors) which corresponds to feature quantitative
measurements of the images. The larger the initial set of
descriptor, the greater the number of possibilities to analyse
the slides, with the advantage of a non-a priori approach, as
discussed below. The descriptors can be global (dgi)i∈[1,Ng ]
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Fig. 1. Framework global structure.

or local (dli)i∈[1,Nl], with Ng and Nl respectively the num-
ber of global and local descriptors. A global descriptor gives
a wide description of the image (e.g. global graph features,
fractal dimension [11], proportion of stained tissue) while a
local descriptor gives localized information (e.g. run length,
co-occurrence matrix, histograms, texture spectrum, local bi-
nary pattern [12] or contour harmonics [13]). Each descriptor
is an independent quantitative measure which is an other way
to describe an image without a priori consideration. Local
descriptors can be used either for the tissue identification
(e.g. segmentation) or the global classification of the slide
(e.g. grading approach).

Let (Sj)j∈[1,Q] be a set of Q histological slides as large
and representative as possible. In a grading approach, for
each slide one global image gj and numerous local regions
of interest (lROIs) (lj,•) = (lj,k)k∈[1,Mj ] are extracted. A
reading is done by pathologists (i.e. grade of fibrosis) and if
C is the number of different grades of the pathology, let Lj ∈

[1, C] be the label associated with Sj . For each slide Sj ,
global and local measurements are performed respectively
on gj and (lj,•). As the ground truth is defined for the whole
slide, local measurements have to be considered all together
and globally. The model extracts a series of distribution
features (mean, standard deviation, kurtosis and skewness)
from the computation of local descriptors on the slide lROIs
(dl(lj,•) = dl((lj,k))k∈[1,Mj ] in Sj). In summary, for each
slide Sj the following measurements are performed:

dgi(gj), i ∈ [1, Ng] (1)

mean(dli(lj,•))
standard-deviation(dli(lj,•))

kurtosis(dli(lj,•))
skewness(dli(lj,•))















i ∈ [1, Nl] (2)

From the previous measure results and the ground truth,
a feature selection algorithm is used. This algorithm does
a statistical research on the initial list of features to obtain
the most relevant association of features Π∗. The feature
selection approach is defined by two functions: the search

method and the evaluation method. From exhaustive search
(very expensive) to efficient search techniques such as ran-
dom search, there are numerous exploration methods. In
this study, greedy algorithms are performed: at each stage,
they make the locally optimal choice with the hope of
finding a global optimum. Forward and backward greedy
algorithms were used, the first starts from an empty set
whereas the latter starts from the whole set of descriptors.
At each step, a subset of descriptors Π is evaluated over
the whole training data using machine or statistical learning
techniques (e.g. Recursive Partitioning or Support Vector
Machines). A k-fold cross-validation is used to ensure a
robust evaluation of the resulting classification. The average
of bad classification rates ε depends on Π. The exploration
method gives the combination of descriptors Π∗ such as
varepsilon is minimized (ε = ε∗ is minimal). Depending
on the search algorithm, the minimum of error rate is not
necessary reached at a global minima.

When the combination of descriptors is computed with an
error rate sufficiently low, the framework is calibrated. It is
then possible to use the classifier with these descriptors for
the classification of new cases.

B. Heterogeneity descriptors

Numerous descriptors have been implemented to deal with
histopathological slides. This list has been established by
studying different ways to describe and quantify the hetero-
geneity on histological slides, as many ways to approach
the problem from a different angle. Thus it is interesting to
combine them in order to characterize a complex issue. These
measurements are grouped into three categories (Table I):

The morphological features provide information about
the shape of the objects in the image. The morphology is
particularly useful to quantify shape or contour irregularities,
the density or the type of the objects. In particular, this kind
of heterogeneity criteria is relevant to evaluate the fibrosis ex-
pansion. This set of morphological features (Table I) includes
the area, the concavity, the eccentricity or the roundness.

The image structure is also considered using a graph-
based model of the image. From the histology image spec-
tral data and an optional segmentation mask, a graph is
extracted as follows. A set of primitives is generated from
the local homogeneous regions. A Delaunay triangulation is
performed to build a regular graph from the primitives. The
non-relevant edges are filtered using the local context and the
minimum spanning tree is optionally extracted. The structural
features are then extracted from the resulting graph. The
graph structure is appropriate to quantify complex structures
or networks which particularly applies to fibrous tissue. The
set of structural features is given in Table I.

Textural features are often used to describe the tissue. It
is appropriate to extract the texture features for the tissue
identification and classification, the definition of the region
boundaries and the analysis of tissue components. This set
of features includes the proportion of stained tissue, the
histograms, the homograms [14], the Fourier distance [15],
the autocorrelation [16], the texture spectrum [16], the local
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TABLE I

TEXTURAL, MORPHOLOGICAL AND STRUCTURAL FEATURES.

Textural features
Proportion of stained tissue Texture spectrum [16] Fourier distance [15]
Histograms & Homograms [14] Fractal dimension [11] Run-length matrix [17]
Local binary patterns [12] co-occurrence matrix [9] Autocorrelation [16]

Morphological features [8].
Area Perimeter Aspect Ratio
Form factor (compactness) Area equivalent diameter Zernike moment
Perimeter equivalent diameter Eccentricity Rectangularity
Fourier edge descriptor [13] Contour irregularity Concavity
Convex area Solidity Roundness
Spot areas ratio (pigmentation ratio) Area irregularity [18] Orientation

Structural features: graph-based features [19]
Number of nodes/edges Number of cycles Total length
Total weight Degree distribution Cost
Modularity Shortest pathlength Density
Graph spectral analysis Distance to the nearest Centrality
Spectral radius Clustering coefficient Detour Index
Network Density Pi Index Eta Index
Theta Index Beta Index Alpha Index
Gamma Index Assortative coefficient Hierarchy
Shimbel Index distribution Eigen exponent Hub Dependence
Average nearest neighbors
degree distribution

Participation coefficient
distribution

Number of connected
components

Polygons and triangles features Cohesion index distribution Assortativity
Koenig number distribution Sum of the eigenvalues in the spectrum

binary patterns [12], the fractal dimension [11], the co-
occurrence matrix [9] and the run length matrix [17].

C. Implementation specifications

The framework is neutral, for instance, it does not define
the segmentation thresholds, the filters, the graphs, the size of
the regions of interest or the parameters of the morphological
operators by itself. Anything that can remove its neutrality
is given as input parameter or input data.

The framework calibration will always depend on training
data. Therefore, if it is calibrated to recognize glioblastoma,
it will not be appropriate to deal with fibrosis. A calibration is
required for each different case. Similarly, particular attention
should be paid to the training data specificity.

The framework is thought as an association of modules
in such a way that every implemented technique can be
substituted by another equivalent technique. It provides some
flexibility in the analysis process. Thus, it is possible to
redefine the training data, the parameters, the initial list of
descriptors, the exploration strategy, the training method and
the classification evaluation function.

IV. RESULTS

Several benchmark datasets from the R package mlbench
were used to validate the feature selection implementa-
tion and the results are compared to those obtained by
Blachnik [20] (Table II). Two statistical classifiers are used:
rpart (recursive partitioning and regression tree) and svm
(support vector machine), respectively from rpart and e1071
R packages. For both methods, the parameters are set to
default values which are detailed in [21] and [22]. Two
backward elimination search functions (greedy algorithm)
are tested: an in-house recursive algorithm (RB) and the
backward search function from the FSelector R package
(FS). Acc and F are respectively Accuracy (Acc = 1 − ε)
and Fraction of selected features. The framework results

TABLE II

CLASSIFICATION METHODS IN COMPARISON WITH BLACHNIK [20](B).

Benchmark B rpart+FS rpart+RB svm+FS svm+RB
dataset Acc F Acc F Acc F Acc F Acc F
Iris 0.953 0.75 0.964 0.75 0.955 0.25 0.966 1 0.963 0.5
Ionosphere 0.878 1 0.899 0.906 0.882 0.281 0.945 0.938 0.916 0.218
Sonar 0.668 0.933 0.735 0.95 0.662 0.717 0.844 0.967 0.813 0.183
Wine 0.973 0.846 0.921 0.846 0.922 0.384 0.990 1 0.860 0.308
Breast Cancer 0.978 0.778 0.955 0.889 0.949 0.444 0.968 1 0.967 0.667

FS: FSelector backward elimination algorithm. RB: in-house recursive algorithm of
the backward elimination approach. Acc: accuracy. F: fraction of descriptors.

Fig. 2. Examples of human liver tissue. From left to right: low, average
and high proportion of collagen - of fibrosis - stained with Sirius red.

are comparable with the reference results. The accuracy can
keep close to the reference value with a number of selected
descriptors significantly lower than the reference.

The framework was firstly tested with 8 biopsies of human
liver (Sirius red stain). For each slide, 20 local regions of
interest were extracted to gather 160 hepatic tissue images
(of any kind). Each image is labeled by an expert according
to the quantity of stained collagen in the image: ”low
proportion” (LP, 58 images), ”average proportion” (AP, 71
images) and ”high proportion” (HP, 31 images) (Fig. 2). As
a first step, the classes LP and AP were grouped which
gives 129 images labeled LP+AP and 31 images labeled
HP. The classification results are shown in table III. The
method rpart+RB gives an accuracy greater than 95% with
20 features. In a second step, the analysis was performed
with the non-grouped images, with 58 images labeled LP, 71
images labeled AP and 31 images labeled HP (Table III). The
error rate had a very significant increase for every methods
in comparison with previous results. A minimal error rate
approximatively equal to 16% is reached with a subset of 4
features with the method svm+RB. This increase is mainly
due to difficulty to accurately distinguish LP and AP labeled
images (even qualitatively) by the reference pathologists.

In a second time, the method was evaluated in the context
of a grading approach using sixty-eight human liver biopsies
(Sirius Red stain) labeled by pathologists using gold standard
Metavir scores. Considering possible variabilities in biopsy
labeling, the ground truth was defined as follows (C = 3):
L1 (scores F0 and F1, 17 images), L2 (scores F2 and F3, 32
images) and L3 (scores F4, 19 images). A large initial set
of descriptors (Ng = 2 and Nl = 256), a forward search
(FSelector R package) and a SVM based evaluator were
used for this test. The size of the local regions of interest
(lROIs) was 250 µm and the magnification was x5. The
feature selection framework gives a subset of six descriptors
(F = 1.875%) with a total accuracy of 82.759%. The final
subset is composed of the following descriptors: skewness of
the co-occurrence matrix contrast, the co-occurrence matrix
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TABLE III

EVALUATION OF THE TWO-CLASSES (LEFT) CLASSIFICATION VERSUS

THREE-CLASSES (RIGHT) CLASSIFICATION OF LIVER TISSUE IMAGES.

two-classes three-classes
Method Acc BER F Acc BER F
rpart+FS 0.9419 0.1092 0.9778 0.7463 0.2060 0.9556
rpart+RB 0.9573 0.0887 0.4444 0.7567 0.1987 0.5333
svm+FS 0.9316 0.1379 1 0.7749 0.2179 0.9556
svm+RB 0.9386 0.1195 1 0.8375 0.1585 0.0889

Acc: Accuracy. F: fraction of descriptors. BER: balanced error rate.

dissimilarity, the histogram kurtosis, the histogram standard
deviation and the homogram standard deviation distributions,
and the standard deviation of the homogram median value
distribution.

V. DISCUSSION

The components of a system to classify histological im-
ages by quantifying textural, morphological and structural
global and local features have been presented. From a wide
initial list of descriptors and without a priori, it computes the
most relevant subset of descriptors in terms of classification.
In an original approach, distributions are defined from the
local features which are extracted from the regions of interest
of the slides and global features are extracted from these
distributions (mean, standard deviation, skewness and kurto-
sis). Thus, even if the ground truth is a global information
(grading approach) any kind of local feature takes part in
the feature selection process with the global features. Bench-
mark tests have shown that, in comparison with equivalent
methods, this feature selection implementation is able to
find lists of descriptors which are significantly shorter for
an equivalent accuracy. Moreover, the results have pointed
that for the classification of human liver histological slides
in terms of grading (simplified Metavir scale), the framework
could reach an accuracy of 82.8% after selecting only 1.87%
of the initial set of descriptors. However, it has been seen
that the error rate could increase significantly (from 5% to
16%) when the ground truth is defined on an homogeneous
dataset (when labeling at least two classes which are difficult
to separate). Further work has to be done to improve the
framework accuracy and robustness, including an assessment
of the method in larger dataset.
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