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Abstract— Treadmills provide a safe and efficient method for 

gait rehabilitation but treadmill based training paradigms have 

not been shown to create superior results when compared with 

traditional physical therapy methods such as overground 

training. One explanation for this may be that walking at a 

constant, fixed speed requires little mental engagement from the 

user, which has been postulated as a key factor in the success of 

motor learning. To increase mental engagement, we developed a 

user-driven treadmill control scheme. In this paper we use 

electroencephalography (EEG) to compare cortical activity 

during user-driven (active) walking with activity on a normal 

(passive) treadmill in nine healthy subjects. We used 

independent component analysis (ICA) to isolate brain activity 

from artifactual components. We fit equivalent dipole sources to 

each brain component and clustered these across subjects. Our 

analysis revealed that relative to the passive treadmill, active 

walking resulted in statistically significant decreases in spectral 

power, i.e. desynchronization, in the anterior cingulate, 

sensorimotor cortices, and posterior parietal lobe of the cortex. 

These results indicate that user-driven treadmills more fully 

engage the motor cortex and therefore could facilitate better 

training outcomes than a traditional treadmill.   

I. INTRODUCTION 

Treadmill based training is a common method of 
rehabilitation for individuals with a locomotor disorder.  Body 
weight supported treadmill training is often employed because 
it provides a safe, convenient, and efficient method for 
improving lower extremity coordination and control during 
walking [1]. But, evidence from randomized controlled trials 
indicates this strategy is no more effective than traditional 
therapies for gait training [2]. One reason for this may be that 
walking on a treadmill at an imposed speed is monotonous and 
requires limited mental engagement of the user. Studies 
utilizing functional magnetic resonance imaging and 
transcranial magnetic stimulation have suggested that 
individual motivation and active user participation are crucial 
elements for neural plasticity and effective motor learning [3]. 
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Thus, two important challenges are to design a novel 
locomotion rehabilitation paradigm that commands the user’s 
attention as well as a valid, reliable method to quantify 
engagement across locomotor tasks.    

Advances in mobile functional brain imaging have made 
the latter task more approachable. Electroencephalography 
(EEG) is particularly well suited to monitor changes in 
cortical activity during locomotion due to its unencumbering 
wireless sensors, relatively dense scalp coverage, and high 
temporal resolution. Furthermore, advances in signal 
processing techniques have resulted in algorithms capable of 
separating brain activity from physiological and movement 
artifacts [4-6] and algorithms that merge noninvasively 
acquired EEG data with magnetic resonance based head 
models to estimate equivalent dipole sources of cortical 
activity [7]. Previous research has demonstrated the viability 
of EEG for studying cortical activity during walking, 
including extraction of visual-evoked responses during gait 
[8], identification of intra-stride changes in EEG spectral 
power that are coupled to the gait cycle [9], and extraction of 
kinematic information during walking from delta band EEG 
[10]. Collectively, these studies and others have shown that 
supraspinal circuits, especially those of the motor cortex, have 
a significant role in motor control during walking.    

We have previously published a method for simulating 
overground locomotion on a treadmill through the use of a 
feedback controller that allows the user to drive it at a 
self-selected speed [11]. In this paper we compare brain 
activity, measured via EEG, during walking on a normal 
treadmill with the user-driven control scheme. Event related 
desynchronization (ERD), measured as a decrease in spectral 
power in the alpha (8-13 Hz) and beta (13-30 Hz) frequency 
bands, is a well-established movement related phenomenon 
[12]. Because ERD indicates a departure from baseline 
oscillatory activity, it is considered an electrophysiological 
correlate of increased cortical activation for processing of 
sensory information and/or production of movement [12]. A 
recent study showed enhanced sensorimotor 
desynchronization in able-bodied individuals when they 
walked actively in a robot-assisted treadmill trainer compared 
to when they passively allowed the robot to move their legs 
[13]. However, to our knowledge, no one has examined the 
differences in brain activity between standard treadmill 
walking and user-driven treadmill walking. We hypothesize 
that the user-driven scheme will induce desynchronization in 
the motor cortex, indicating increased engagement of the 
participant in the walking task. This active participation could 
facilitate neural plasticity and expedite the process of motor 
learning.  
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II. METHODS 

A. Experimental Protocol and Data Collection   

Nine healthy adults (5 female, 4 male; age: 29 ± 6 years; 
height 165 ± 9 cm; weight 66 ± 13 kg) with no history of 
neurological disease participated in this study. The 
experimental protocol was approved by the institutional 
review board of the National Institutes of Health. All subjects 
gave written consent prior to study participation. Prior to the 
walking tasks, each subject was fitted with a 64-channel active 
electrode, wireless EEG system (actiCHamp, Brain Products, 
Morrisville, NC) with sensors placed according to the 10-20 
international system (Fig 1a). Reflective markers were placed 
on the pelvis and feet to monitor kinematics using a Vicon MX 
motion capture system (Vicon, Denver, CO).  EEG data were 
collected at 500 Hz while kinematic data were collected at 120 
Hz.   

Prior to walking on the treadmill, the participant’s 
overground self-selected walking speed was assessed using 
the motion capture system. Then, slow (30% slower than 
self-selected) and fast (30% faster than self-selected) walking 
speeds were computed for each subject. Each participant 
completed three trials of treadmill walking in two different 
modes: passive walking and active walking. The order of the 
mode for each trial was randomized. Passive walking mode 
utilized typical treadmill behavior: belt speed was 
automatically adjusted to the target speed within each block 
(slow or fast) so that the walking speed was dictated by the 
treadmill. In the active mode, a feedback controller was 
implemented to allow the user to drive the speed of the 
treadmill [11].  Pelvis position and swing foot velocity were 
measured in real time by the motion capture system. These 
quantities were used to control the speed and acceleration of 
the treadmill belts so the subject’s pelvis remained in the 
center of the treadmill regardless of walking speed as 
described in [11]. In this way, the user controls the speed of 
the treadmill, and, in combination with the visual feedback 
from the screen they are able to track a target walking speed 

(Fig 1b). During both passive and active walking trials, the 
participant was instructed to minimize the difference between 
their walking speed and the target (slow or fast). 

A treadmill walking trial consisted of ten 20 sec blocks of 
walking alternating between slow and fast speed (Fig 1c). 
Within each block of the trial, the participant was instructed to 
match their walking speed to the command speed (slow or 
fast).  A screen in front of the participant displayed the target 
speed and the user’s current walking speed (Fig 1b).  Prior to 
the data collection, each participant underwent 5 minutes of 
practice for both the passive and active walking modes.    

B. EEG Signal Processing  

All data analysis was performed off-line using custom 
software in Matlab (Mathworks, Natick, MA). Gait events 
(heel strike and toe-off) were determined from the foot marker 
and treadmill force plate data. EEG signals were high pass 
filtered at 1 Hz (5

th
 order Butterworth) and time-locked to the 

kinematics. Noisy EEG channels, indicated by a standard 
deviation > 1000 μV or a kurtosis more than 5 standard 
deviations from the mean were removed, and the EEG was 
re-referenced to a common average. Next, we applied an 
artifact subspace reconstruction (ASR) algorithm, available as 
a plug-in for EEGLAB software [14], to remove high 
amplitude artifact from EEG collected during walking. ASR 
uses principal component analysis and a baseline window, 
collected as 1 minute of EEG during standing, to remove 
stereotypical (e.g. eye blinks) and non-stereotypical (e.g. head 
motion) artifacts from EEG recorded during walking [6]. We 
then ran independent component analysis (ICA) on the 
cleaned EEG data for each subject using an adaptive mixture 
algorithm [5]. We then used the dipole fitting toolbox within 
EEGLAB [8] to compute a single equivalent dipole for each 
independent component (IC) by warping the EEG electrode 
montage to the Montreal Neurological Institute (MNI) 
standard brain model. ICs whose dipole scalp projection 
contained greater than 20% residual variance were removed 
from further analysis. In a similar manner as [9], we 
categorized the remaining dipoles for each subject as brain or 
non-brain based on the dipole locations (Talairach 
coordinates), power spectra, and time traces of voltage. On 
average, we identified 7 (range: 4-10) brain dipoles for each 
subject. These ICs were then clustered across subjects using 
feature vectors formulated with dimensions for power spectral 
density (<100 Hz) and dipole location. Using EEGLAB 
functions, feature vectors were reduced to 10 principal 
components before being clustered across subjects using 
k-means (k = 7). ICs greater than 3 standard deviations from a 
cluster centroid were relegated to an outlier cluster and 
subsequently omitted from analysis.  

Each time point of the IC data was marked as one of four 
walking commands: slow, fast, slow-to-fast transition, and 
fast-to-slow transition and one of two walking types: passive 
or active. The transitions included the six gait cycles – three 
before and three after – surrounding the change in command 
speed, a number that assured all subjects had reached steady 
state based on post-hoc analysis of gait speed. The slow and 
fast conditions included only the steady state walking at that 
command speed. In all subsequent analysis, only the steady 
state, slow command speed walking trials were analyzed. For 

 
Fig. 1: (a) Experimental setup including wireless EEG and 

treadmill. (b) Screen shown to the user during walking 

indicating command (slow or fast), target, and current speeds. 

(c) Block design of each walking trial consisting of five 

periods of slow and fast walking speed with transitions.  
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each IC and walking mode, we computed the power spectral 
density (PSD) using a multitaper fast Fourier transform with 
discrete prolate sequences [15]. We computed the cluster 
grand mean PSD by averaging across all ICs within each. The 
non-parametric Kruskal-Wallis test was used to assess 
significant differences in PSD for specific frequency bands: 
delta (1-4 Hz), theta (4-8 Hz), alpha/mu (8-13 Hz), beta 
(13-30 Hz), and gamma (30-100 Hz).  A value of p < 0.05 
represented significance.   

III. RESULTS 

The k-means clustering resulted in seven spatially distinct 
groups of electrocortical dipole sources, plus one additional 
outlier cluster. We retained only those clusters containing 
dipoles from a majority of subjects for analysis. Because we 
did not examine within stride or unilateral measures in the 
present analysis, we combined the left and right sensorimotor 
areas into a single cluster. This resulted in clusters 
representing four areas of the cortex: prefrontal (PF), anterior 

cingulate (AC), sensorimotor area (SMA), and posterior 
parietal lobe (PP) (Fig 2). Using the coordinates of each 
dipole, we identified the Brodmann areas represented within 
each cluster from the Talairach atlas [16] (Table 1). Dipoles 
were located in a total of 9 Brodmann areas across the four 
clusters.    

All significant changes in PSD showed a 
desynchronization (less power) in active walking compared to 
passive. Furthermore, significant changes in PSD were 
present in all four clusters (Fig 3, Table 1). The only 
significant difference in delta band power was observed in the 
AC cluster. Theta band power was similar across both 
conditions for all brain regions. Desynchronization of the 
alpha band was present in active walking for the AC, SMA, 
and PP areas. Only the posterior parietal cluster did not show 
significance in the beta band, while significant differences in 
gamma band power were present in all four clusters.  

IV. DISCUSSION 

The design of a treadmill-based gait training paradigm 
which promotes user participation and an effective method for 
monitoring that participation remain active topics of research. 
In this study we examined brain activity during two walking 
conditions: typical treadmill walking (passive) and walking on 
a treadmill with the belt speed driven by the motion of the user 
(active). For a fair comparison, it is important that kinematics 
and kinetics of walking are similar across conditions. Our 
previous development of a real time controller for a 
user-driven treadmill resulted in similar gait patterns between 
conditions [11].   

We used EEG to assess cortical activity of nine healthy 
adults while they were tracking a target speed during passive 
and active treadmill walking. To help control the effect of task 
novelty on cortical involvement, we set the command speed to 
be 30% less than self-selected gait speed for both passive and 
active conditions. We employed a two step process to clean 
our EEG signals. First, we applied artifact subspace 
reconstruction to eliminate high amplitude noise from motion 
artifact. We then applied adaptive mixture ICA to parse the 

 
Fig. 2: Average dipole scalp projections of the four cortical 

clusters: prefrontal cortex (PF), anterior cingulate cortex 

(AC), sensorimotor area (SMA), and posterior parietal lobe 

(PP). The number of subjects (S) and independent 

components (IC) represented in each cluster are indicated.  

 
Fig. 3: Grand mean power spectral density of each cluster 

during passive (solid) and active (dashed) treadmill walking.   

TABLE I 

 SIGNIFICANT DIFFERENCES IN POWER SPECTRAL DENSITY BY 

CLUSTER AND FREQUENCY BAND 

Cluster Name 
Prefrontal 

(PF) 

Anterior 

Cingulate 

(AC) 

Sensorimotor 

Area (SMA) 

Posterior 

Parietal (PP) 

Brodmann Areas 9, 10, 11 24, 32 4, 6 5, 7 
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delta (1-4 Hz) 0.1489 0.0243 0.2482 0.3865 

theta (4-8) 0.7630 0.8802 0.4739 0.7919 

alpha (8-13) 0.7532 0.0200 0.0147 0.0000 

beta (13-30) 0.0002 0.0176 0.0218 0.6718 

gamma 

(30-100) 
0.0000 0.0000 0.0001 0.0006 

Bold indicates a significant difference (p < 0.05) 
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64-channel EEG into maximally independent components 
(ICs). ICs derived from scalp-recorded EEG represent the 
nearly synchronous activity of large groups of neurons within 
a relatively small cortical domain. The far-field projection of 
such a cortical patch of activity has been shown to be dipolar 
[17] and thus, we used inverse modeling combined with a 
boundary element model to identify a single best fitting dipole 
for each IC. The power spectral density of each dipole 
provides a measure of synchrony of this small area of the 
brain. To increase statistical power, we clustered ICs across 
subjects, resulting in groups characterizing four regions of the 
brain for a majority of subjects.  

Our results demonstrate significant differences in cortical 
activity between typical and user-driven treadmill walking.  It 
is well known that movement preparation and execution 
results in an event related desynchronization (ERD) of the mu 
rhythm contained in the alpha band (8-13 Hz) across the 
sensorimotor and posterior parietal cortex [12, 18]. We 
observed significantly more alpha band desynchronization in 
the AC, SMA and PP regions during active treadmill walking, 
indicating a further disruption of baseline oscillatory activity 
than is present in typical treadmill walking. This result is in 
agreement with a previous study that showed a decrease in mu 
rhythm of sensorimotor areas when individuals walked with a 
robotic gait trainer rather than allowing the robot to simply 
move their legs [13]. We also observed a power decrease in 
the lower beta band for the SMA cluster in agreement with 
prior work showing beta ERD during lower extremity 
movements [19]. 

Thus, our data may indicate that the user driven treadmill 
engages the motor pathways in the brain more than a typical 
treadmill. This finding is further supported by our observation 
of significant changes in gamma band activity across all four 
clusters, which may be important because previous work has 
suggested that the sensorimotor system may shift toward 
operating at higher (gamma) frequencies in situations 
requiring dynamic force output [20].   

Importantly, we also observed significant changes in the 
PSD of the AC cluster. The dorsal portion of the anterior 
cingulate appears to play a prominent role in error detection 
[21]. In our study participants were asked to track a target 
speed in both the passive and active walking modes – but in 
the passive mode treadmill belt speed was set at the target 
speed, making the tracking task trivial. However, in the active 
mode, the treadmill reacted in real time to changes in the 
pelvis position and swing foot velocity of the participant, 
which made the tracking task more demanding. The decreased 
PSD at a wide range of frequency bands in the AC could be 
related to the increased challenge in the speed tracking task. 
Also, the only significant change in delta band activity was 
observed in the AC cluster. Previous work suggests that 
information pertaining to lower extremity angles and velocity 
may be contained in the delta band of EEG [10]. The 
difference in AC activity observed in the active walking may 
be indicative of closer tracking of limb velocity to match the 
target speed.  

The current work examined changes in the spectral power 
of cortical clusters in able-bodied individuals. Future work 
will focus on more detailed examination of brain activity 

during passive and active walking, including within stride 
spectral perturbations, coherence, and statistical measures of 
connectivity and information flow with the ultimate goal of 
developing a treadmill based gait training paradigm to 
maximize cortical involvement and motor learning.    
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