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Abstract— As a first step toward building a smart home
behavioral monitoring system capable of classifying a wide
variety of human behavior, a wireless sensor network (WSN)
system is presented for RSSI localization. The low-cost, non-
intrusive system uses a smart watch worn by the user to
broadcast data to the WSN, where the strength of the radio
signal is evaluated at each WSN node to localize the user. A
method is presented that uses simultaneous localization and
mapping (SLAM) for system calibration, providing automated
fingerprinting associating the radio signal strength patterns
to the user’s location within the living space. To improve
the accuracy of localization, a novel refinement technique is
introduced that takes into account typical movement patterns
of people within their homes. Experimental results demonstrate
that the system is capable of providing accurate localization
results in a typical living space.

I. INTRODUCTION

The year 2011 saw the beginning of the baby boomer
retirement; ten thousand Americans will turn 65 every day
until 2029, and by 2030, almost 20% of the U.S. population
will be 65 and older [1]. Unlike other age groups, nearly 70%
of these people will require some type of long-term care,
including both medical services that help manage chronic
illness, and non-medical services like assistance with Activ-
ities of Daily Living (ADLs) and Instrumental Activities of
Daily Living (IADLs). Not only is there a drastic increase
in the number of people who need long-term managed care
— the life expectancy is continuing to rise at the same time.
This means that many people will require long-term care for
20 or more years [2].

We can reduce the cost of long-term care by delaying
its onset and improving its efficiency. Smart home health
monitoring systems — which track behaviors and activities
of users in their homes — can help with both of these goals,
but have yet to see broad deployment because they require
expensive components, provide limited data resolution, and
are time-consuming to set up. Many of these systems are
designed for specific clinical populations, so they are only
designed to capture specific data relevant to evaluating pa-
tients with specific ailments.
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Here, an Internet-enabled smart home monitoring system
is presented that is capable of measuring a wide variety
of phenomena while providing room-level localization of
the user. The goal of the system is to achieve continuous
evaluation of ADLs and the IADLs, thus enabling proactive
healthcare interventions. The intended outcome is to allow
the elderly to remain in their homes longer as they age and
avoid costly nursing home care or hospitalization.

The proposed system only requires that the user wear a
standard form-factor wrist watch. Data is continuously sent
from the watch to the wireless sensor network, where it
is then streamed over the Internet to a centralized server
to be processed and analyzed automatically. A one-time
calibration procedure done in the living space, which uses
simultaneous localization and mapping (SLAM), provides
both an accurate floorpmap and a means for calibrating
the localization system. Experimental results are given to
demonstrate that this method is capable of providing accurate
real-time room-level localization of the user.

This is the first step towards building a system that will
perform a wide array of behavioral classification.

II. RELATED WORK
The functions of a smart home can generally be broken

down into the following types of monitoring [3]:
• Physiological: Directly analyzing vital signs
• Functional: Activity and behavioral classification
• Safety: Detection of environmentally hazardous events
• Security: Intruder alert; detecting wandering patients
• Social: Interaction with others and integration into the

community
Mature systems already exist for safety and security; and
social monitoring is nearly impossible for a smart home to
parameterize, since it oftentimes takes place outside of the
house, varies greatly from person to person, and is highly
contextual [4]. Thus, the majority of recent smart home
research has focused on developing systems for monitoring
physiological and functional parameters.

Although established methods exist for measuring physio-
logical parameters, solutions for measuring functional param-
eters remain highly disjoint [5]. Skubic et al. implemented
their system in 17 apartments and continuously recorded data
over a two year period in the TigerPlace eldercare facility
[6]. Their system localizes the subjects using passive infrared
(PIR) sensors, bed sensors, and video cameras.

Brownsell et al. [7] and Glascock et al. [8] demonstrate the
usefulness of commercial products for position and activity
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tracking, and further demonstrate that these technologies can
be used for preventative care.

Kaye et al. performed an extensive study in which 233
participants agreed to have PIR detectors installed in their
home to detect position and gait speed [9]. The system
also tracked computer usage and exterior door opening and
closing. This study revealed well-defined baseline parameters
among different demographics in terms of both age and
medical condition. It represents the largest known smart
home deployment of its kind, paving the way for future
clinical evaluation in this area.

While not always explicitly discussed, almost all smart
home research systems employ some form of indoor local-
ization, which refers to techniques used to determine the
location of objects and people indoors. The majority of smart
home researchers use PIR sensors to detect the position of
subjects in their home [10] [5], however, these sensors –
which are best known for use in residential and commercial
motion-activated lighting applications – lack sophistication;
they only produce a binary “present/not-present” output,
and they are incapable of distinguishing between different
living subjects (including pets), which is a critical system
requirement for most practical deployments.

Received signal strength indication (RSSI) localization is
an inexpensive indoor localization method that balances mote
cost, deployment complexity, functionality, and localization
precision. The basic premise of active-mode RSSI localiza-
tion is to deploy sensors in an environment that measure the
received signal strength of a transmitting tag. Generally, mote
density is slightly higher when compared to PIR sensors,
but better-than-room-level accuracy is possible and, most
importantly, individuals wearing unique radio tags can be
distinguished from each other (and from the movements of
other individuals and pets that are not tagged).

The most accurate localization systems relying on the
strength of received signals use RSSI fingerprinting as a way
to determine location from a set of received RSSI values [11],
[12]. The RSSI fingerprinting model assumes the environ-
ment is static — i.e., whatever environmental characteristics
affect the signal will continue to affect the signal in the
same manner forever. As long as this condition is met, this
model predicts that returning the tag to a specific position
will always produce a specific RSSI output at each mote.
Therefore, the tag can be localized by comparing received
RSSI data to RSSI data collected at known locations. These
known locations make up the allowed states the tag can be
in – these states may or may not be distributed uniformly
in space. Because of this, localization resolution depends on
the state density around the tag’s location.

III. METHOD

Home monitoring systems can provide input data for a
wide array of classification algorithms. In this work, the
focus is the localization component of the system – which
is the key to many behavioral classification challenges.

The proposed home monitoring system comprises four
components: a smart watch, several fixed-position WSN

Motes Watch + Laser Scanner

Fig. 1. An illustration of the proposed RSSI fingerprinting procedure.
The user calibrates the system by traversing through the living space with
the smart watch mounted to a laser scanner while WSN motes installed
throughout the home record the signal strength of the watch. The laser
scanner allows the system to generate a floor map of the space while
providing the location of the watch at all times.

motes, an Internet-enabled WSN gateway, and an Internet-
visible centralized server. While in the home, the user wears
a smart watch (Chronos, Texas Instruments running custom
firmware), which broadcasts accelerometer data to the WSN
installed in the user’s home. Each WSN mote receives the
smart watch’s accelerometer data and measures the wireless
signal strength of the smartwatch. Both of these data are
relayed to the gateway, which forwards it to a centralized
server over the Internet. The server stores and analyzes this
data to determine the user’s position and activity.

A. RSSI Fingerprinting

For each message the watch sends, the system records a
vector rt comprising the RSSI reading of the watch’s signal
strength obtained by each mote. To calibrate the system,
the smart watch is moved around to different rooms in the
living area while periodically sending packets to the system.
Each rt is associated with a room label vt,i that corresponds
with the room the watch was located in at time t. To avoid
the tedious task of manually associating the data with the
location during calibration, the proposed system automates
the process by localizing the watch using a simultaneous
localization and mapping (SLAM) system (Fig. 1).

The system uses the Hokuyo UTM-30LX scanning laser
rangefinder, capable of providing accurate (with a resolution
of 2 cm and 0.25◦) measurements in a circular arc. In
general, when using a scanning laser rangefinder, SLAM
is achieved by matching the latest scan to a map made
by previous scans and then adding information from the
latest scan to the map. Specifically, HectorSLAM [13] is
used to achieve high-quality real-time tracking and mapping
results. To train the system to predict room labels from RSSI
readings, a set of radial basis function (RBF) neural network
coefficients are computed using linear optimization. The
shape of the RBFs is chosen to be Gaussian and their means
and variances are found by applying k-means clustering to
the entire set of RSSI readings. The flowchart shown in Fig.
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Fig. 2. A flowchart of the proposed RSSI fingerprinting method. The
section denoted “one-time calibration” is used to derive the parameters of the
RBF neural network. Once calibrated, the system is capable of performing
localization using only RSSI measurements of the watch pings as inputs.

2 illustrates how SLAM is used to calibrate the RBF neural
network used for RSSI fingerprinting.

Once the system is trained, it can be used to estimate
the probabilities P (vt,i|rt) at all times t for each state i.
From the probabilities, it is possible to assign the room
estimate to the one with the highest probability in a sample-
by-sample fashion, where states are considered independent
from each other. However, because the system is built to
measure human movement, the sequence of paths should be
resolved in a global fashion.

B. Refinement

Between any two instances of time, the user can either stay
in the same room or move to another, neighboring location.
The floor map generated during the calibration stage can be
used to define the boundaries of each room and determine
the set of all possible room-to-room transitions. As a result,
a directed graph G = (V,E) is created where the set of
vertices V = {v1, . . . , vN} represents all distinguishable
locations and E is a set of edges eij representing all possible
room-to-room transitions from state vi to vj . An example
of a temporal representation of the state diagram is given in
Fig. 3. This graph represents the allowable movement within
the living space. In the field of channel coding, this type of
graph is referred to as a trellis and the maximum likelihood
sequence of hidden states (path) through the trellis can be
found by applying the Viterbi algorithm [14].

Before applying the Viterbi algorithm, it must be assumed
that the user’s movement is restricted to connected paths
through the trellis. At each moment in time, the Viterbi
algorithm finds the probability (or some monotonic function
of probability) of the most probable path that ends in each
state. This is represented by the recursive equation

xt,i = P (rt|vt,i)×max
j∈V

(aj,i × xt−1,j) , (1)

where xt,i is the probability of the most probable path that
ends in state vi at time t and aj,i is the probability of
transitioning from state vt,j to vt,i. For the purposes of
optimal path selection, the probability P (vt,i|rt) found by
applying the RBF neural network can be used in place of
P (rt|vt,i). In this work, the a priori probabilities of being in
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Fig. 3. An example of a trellis used to refine localization estimates obtained
by RSSI fingerprinting. It is assumed that the user’s movement is restricted
to connected paths through the trellis.

each state are considered equal, however, it would be easy to
incorporate unequal a priori probabilities using Bayes’ rule.
It is important to note that applying the Viterbi algorithm
directly to probabilities can lead to an underflow of floating
point numbers, therefore, it is best to compute the logarithm
of (1) for software implementation.

While recursively applying (1), the best paths leading to
each state are recorded. At the end of the sequence, the final
state with the highest probability is linked to the maximum
likelihood path through the trellis.

IV. RESULTS

To holistically evaluate the system’s functionality and
performance, the system was deployed in a large, three-
story fraternity for University of Nebraska Medical Center
students. A resident of the fraternity served as a test subject
for this experiment. The system was deployed on August
14th, 2013 and ran for approximately 2 weeks. Twenty
motes, one smart watch, and one gateway device were
deployed in the home. Before the experiment started, the
system was calibrated using a Chronos watch coupled with
the proposed Laser SLAM method, which provided training
data to the proposed RSSI fingerprinting method.

Fig. 4 shows the floor maps produced by SLAM that are
used for analysis where color coding was added to illustrate
the separation between rooms. The results demonstrate the
SLAM implementation’s ability to accurately generate floor
maps. The white areas in the floor map represent mirrors
and windows, which are known to “fool” laser scanners into
thinking that space exists beyond the walls. While these areas
distort the floor map, they are typically easy to identify and
remove in post processing.

Once the system was calibrated, the subject wore the
Chronos watch while journaling his timestamped location as
he moved around his house; at the same time, the Chronos
watch was set to chirp every second, providing RSSI data
to the motes deployed. Results shown in Fig. 5 illustrate the
localization accuracy when using the proposed RBF neural
network with and without the proposed refinement method.
Accuracy was computed by matching each set of RSSI data
(occurring every second) with the subject’s last-recorded
journal entry. This time window was chosen to illustrate
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Fig. 4. Floor maps of an indoor space that were generated using laser
scanner simultaneous localization and mapping. Colors have been manually
added to the illustration to show the separation between rooms considered
by RSSI fingerprinting.

the the accuracy of the proposed system at a time when
the user changed locations often. Overall, when applying
the proposed refinement method, the system produced 91%
accuracy against the subject’s journal. This improved local-
ization performance by 15% over the performance without
refinement. In particular, it is apparent that the refinement
process removed errors in localization that correspond to
sporadic movements that often violated the movement re-
strictions inherent in the living space. It is important to note
that the value of ai,j used in (1) was 1

40 when i 6= j and(
1−

∑
k 6=i ai,k

)
when i = j. This parameter, linked to the

probability that the user remains in or leaves a room, is vital
for improving localization accuracy with refinement.

V. CONCLUSION
A complete system and method have been presented for

performing real-time localization of a user in their home
using a low-cost, non-intrusive wireless sensor network. This
serves as a first step toward smart home health monitoring
and behavioral classification. Experimental results demon-
strate that the system can accurately track the location
of the user within their home using combination of RSSI
fingerprinting and a novel method for temporal refinement.
The smart watch firmware implementation only transmits
single accelerometer readings, however, the quality of data
transmitted could be improved by performing on-board dom-
inant frequency analysis of the accelerometer readings. The
watch could also be modified to allow for bidirectional
communication so the system can automatically send textual
messages to the watch’s display to provide clinical feedback
to patients. While the current system provides accurate 2D
floor maps, the system’s ability to categorize behavior can be
greatly enhanced with a full 3D model of the house, which
would provide information about furniture arrangement.
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