
  

  

Abstract— Radar has the advantage of being able to detect 
hidden individuals, which can be used in homeland security, 
disaster rescue, and healthcare monitoring-related applications. 
Human macro-motion detection using ultra-wideband impulse 
radar is studied in this paper. First, a frequency domain analysis 
is carried out to show that the macro-motion yields a bandpass 
signal in slow-time. Second, the FTFW (fast-time frequency 
windowing), which has the advantage of avoiding the measuring 
range reduction, and the HLF (high-pass linear-phase filter), 
which can preserve the motion signal effectively, are proposed 
to preprocess the radar echo. Last, a threshold decision method, 
based on the energy detector structure, is presented. 

I. INTRODUCTION 

In homeland security, disaster rescue, and healthcare 
monitoring-related applications, radar has the advantage of 
being able to detect, locate and monitor individuals, even if the 
human bodies are obscured by obstacles. Using 
ultra-wideband (UWB) impulse radar to detect human motion 
[1-3] has been studied recent years, e.g., searching survivors in 
debris after disaster by detecting the breathing motion of 
human body [4-8]. 

Human motion generally can be divided into two types, 
micro-motion and macro-motion [9]. The former indicates the 
human motion in the same range cell, such as standing with 
arm swinging, and breathing. The latter indicates the motion 
that human target moves from one range cell to another, like 
walking and running. In this paper, the detection of 
macro-motion using UWB impulse radar is studied.  

The detection commonly includes two steps. The first is 
the preprocessing of the raw echo samples. The raw echo 
samples are made up of several signal components, i.e., the 
target signal and the interference signals. The former is the 
echo of the moving body. The latter mainly contain the 
stationary clutter (the echo of the static background), the 
noise, the linear-trend [10], the wireless interference caused 
by the communication systems, and the fast-time DC 
component introduced by the sampling system. By signal 
preprocessing algorithms, such as the digital filter [4-6], the 
mean subtraction (MS) algorithm [2], the linear trend 
subtraction (LTS) algorithm [4-6, 10], and the background 
subtraction (BS) algorithms [9, 11, 12], the interference 
signals will be suppressed. 

The second step of the detection is the threshold decision. 
For breathing motion detection, several threshold-decision 
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methods have been offered. In [4], singular value 
decomposition (SVD) in frequency domain and constant false 
alarm threshold were used to decide the existence of the 
respiratory signal. In [5], the respiratory signal of the trapped 
victim was identified by range-frequency windowing. In [6], a 
threshold-decision method was proposed based on harmogram. 
However, there appears to be little relevant work in offering a 
threshold-decision method for the macro-motion detection. In 
[9, 12], the macro-motion was identified by manual inspection 
from the processed experimental data. 

This paper is aimed to study the detection of macro-motion 
using UWB impulse radar, and is organized as follows. In 
section II, a frequency domain analysis is carried out, which 
reveals that the macro-motion yields a bandpass signal in 
slow-time. In section III, the preprocessing techniques are 
studied, and fast-time frequency windowing (FTFW) and 
slow-time high-pass linear-phase filter (HLF) are proposed. In 
section IV, a threshold decision method based on the energy 
detector [13] is presented. A conclusion is drawn in section V. 

II. FREQUENCY DOMAIN ANALYSIS OF THE SLOW-TIME 
MACRO-MOTION SIGNAL 

 
For a uniformly moving object with radial velocity 𝑣𝑣 m/s 

(Fig. 1), the distance from the object to the radar can be written 
as a function of 𝑡𝑡 1, that is 𝑑(𝑡𝑡) = 𝑑0 + 𝑣𝑣𝑡𝑡, where 𝑑0 is the 
initial distance. Let 𝑝(𝑠𝑠)  1 denote the transmitted radar 
impulse. The echo of the impulse sent at 𝑡𝑡 can be represented 
as a fast-time signal as follows, 

𝑟𝑓𝑓(𝑠𝑠) = 𝑝 �𝑠𝑠 − 2𝑑(𝑓𝑓)
𝑐
� = 𝑝 �𝑠𝑠 − 2𝑣

𝑐
𝑡𝑡 − 2𝑑0

𝑐
�,    (1) 

where 𝑐𝑐 denotes light speed. If we regard (1) as a function of 𝑡𝑡, 
we can get the expression of the slow-time motion signal as 
follows, 

𝑟𝑠𝑠(𝑡𝑡) = 𝑝(𝑉𝑡𝑡 + 𝐷),              (2) 

where 𝑉 = − 2𝑣𝑣 𝑐𝑐⁄  and 𝐷 = 𝑠𝑠 − 2𝑑0 𝑐𝑐⁄ . Then, the Fourier 
transform (FT) of 𝑟𝑠𝑠(𝑡𝑡), 

𝑅𝑠𝑠(𝑓𝑓) = ∫ 𝑝(𝑉𝑡𝑡 + 𝐷)+∞
−∞ 𝑒−𝑚𝑚2𝜋𝑓𝑓𝑓𝑓 𝑑𝑡𝑡  

            = 𝑒−𝑖2𝜋𝑓𝐷 𝑉⁄

|𝑉| ∫ 𝑝(𝑥)+∞
−∞ 𝑒−𝑚𝑚2𝜋

𝑓
𝑉𝑚𝑚 𝑑𝑥.     (3) 

Macro-motion Detection Using Ultra-wideband Impulse Radar 
Xin Li, Dengyu Qiao, and Ye Li*, IEEE Member 

 
Fig. 1  The sketch: a moving target is measured by radar 

1 Impulse radar echoes involve two time axis， fast-time and slow-time. In 
this paper, the time variable in fast-time is denoted by 𝑠𝑠, and the time 
variable in slow-time is denoted by 𝑡𝑡. 
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Considering that the FT of the radar impulse, 𝑃(𝑓𝑓) =
∫ 𝑝(𝑠𝑠)+∞
−∞ 𝑒−𝑚𝑚2𝜋𝑓𝑓𝑠𝑠 𝑑𝑠𝑠, (3) can be rewritten as follows, 

𝑅𝑠𝑠(𝑓𝑓) = 𝑒−𝑖2𝜋𝑓𝐷 𝑉⁄

|𝑉|
𝑃 �𝑓𝑓

𝑉
�.            (4) 

The preceding equation reveals the relation of frequency 
spectrum between the radar impulse and the slow-time 
motion signal. If the bandwidth of the radar impulse is 𝑓𝑓𝐿𝐿~𝑓𝑓𝑈𝑈, 
then the bandwidth of the slow-time motion signal is 
|𝑉|𝑓𝑓𝐿𝐿~|𝑉|𝑓𝑓𝑈𝑈 1. This relation can be demonstrated further by 
the similarity between the fast-time waveform of the radar 
impulse (Fig. 2) and the waveform of the slow-time motion 
signal (Fig. 3 (b)). 

 

 
For a single range cell, the slow-time motion signal is 

determined by the motion in the short time period when the 
target echo moves across that range cell. We call this time 
period the observation time period (OT), and denote its length 
by ∆𝑡𝑡. For example, in Fig. 3, the OT of the range cell of 
2.2m is the time interval [𝑡𝑡0, 𝑡𝑡1], and ∆𝑡𝑡 = 𝑡𝑡1 − 𝑡𝑡0 ≈ 0.2s. 

Parameter ∆𝑡𝑡 depends on the width of the radar impulse, 
𝑡𝑡𝑤 (see Fig. 2), and the speed of the motion, 𝑣𝑣. It is easy to get 

∆𝑡𝑡 = 𝑓𝑓𝑤𝑐
2|𝑣|

.                  (5) 

The echo of human body with macro-motion consists of 
the echoes of individual body parts, mainly including head, 
torso, upper leg, lower leg, feet, upper arm and lower arm. 
Although the speeds of these body parts are different and 
change with time, their motions can be regarded as uniform 
motions approximately during the very short OT, which 
means that (4) is still valid.  

If the maximal and minimal values of the speeds of all the 
body parts are 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  respectively, then by (4) the 

bandwidth of the slow-time macro-motion signal will be 
|2𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐⁄ |𝑓𝑓𝐿𝐿~|2𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐⁄ |𝑓𝑓𝑈𝑈. Now, we can conclude that the 
macro-motion generates a bandpass signal in slow-time 2.  

III. PREPROCESSING OF THE RAW ECHO SAMPLES 
The flow chart of the preprocessing of the raw echo 

samples is presented in Fig. 4, where the raw echo samples 
are processed firstly in fast-time and then in slow-time. 

 
A. Fast-time signal processing 

Previous works [4-6] adopted the digital filter as the 
fast-time signal processing technique. The fast-time DC 
component and the wireless interference will be suppressed, 
as these signal components fall into the stop band of the filter. 
In order to preserve the waveform of the echo, a linear-phase 
filter should be adopted [6]. But, a drawback of the digital 
filter is the decrease of the number of the total samples in 
fast-time, which results in a reduction of the measuring range 
3. Fast-time FFT windowing (FTFW) (Fig. 5) can overcome 
this drawback. Since a dominant frequency component, due 
to its leakage in FFT, will make the FW algorithm perform 
poorly, we use the mean subtraction (MS) algorithm to 
remove the strong fast-time DC component before the FFT, 
as shown in Fig. 5. 

 
B. Slow-time signal processing 

The slow-time signal processing techniques are used to 

 
Fig. 2  The radar impulse employed by the experimental radar system 

 
Fig. 3  (a) The echo matrix of the uniformly moving object, which moves 
from 0.2m to 0.25m with a speed of 0.5m/s. (b) The slow-time motion 
signal in the range cell of 2.2m. 

 
Fig. 4  The flow chart of signal preprocessing 

 
 

Fig. 5  The flow chart of the FTFW. 
FFT: Fast Fourier Transform. IFFT: Inverse Fast Fourier Transform. 

1 For example, suppose that the −10dB bandwidth of the radar impulse is 
0.45~3.6GHz . If 𝑣𝑣 = 0.5m/s , then the  −10dB  bandwidth of the 
slow-time motion signal is 1.5~12Hz. 
2 In order to simplify the analysis, we do not consider the amplitude 
attenuation and phase distortion of the radar impulse during the 
transmission. Although these factors result in changing the frequency 
spectrum of the radar impulse, no new frequency components will be 
introduced into the echo. In other word, the energy of echo still distributes 
within the frequency band of 𝑓𝑓𝐿𝐿~𝑓𝑓𝑈𝑈, which means that the energy of the 
slow-time motion signal will still distribute within the frequency band of 
|2𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐⁄ |𝑓𝑓𝐿𝐿~|2𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐⁄ |𝑓𝑓𝑈𝑈 . The conclusion that the slow-time 
macro-motion signal is a band-pass signal is still valid. 
3 Suppose that a FIR filter is adopted, and the filter order is 𝑂𝑂. If the 
original number of samples in fast-time is 𝑁𝑁𝑓𝑓𝑓𝑓, then after the digital filter, 
the number of samples reduces to 𝑁𝑁𝑓𝑓𝑓𝑓 − 𝑂𝑂 + 1. As a result, the measuring 
range becomes �𝑁𝑁𝑓𝑓𝑓𝑓 − 𝑂𝑂 + 1� 𝑁𝑁𝑓𝑓𝑓𝑓�  of the original. 
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remove the strong stationary clutter, and can be divided into 
two types, the non-real-time algorithms and the real-time 
algorithms. 

The non-real-time algorithms, e.g., the mean subtraction 
(MS) algorithm [2], and the linear trend subtraction (LTS) 
algorithm [4-6, 10], have been employed in the application of 
micro-motion detection, such as respiration detection. These 
algorithms cannot operate on a signal in real-time as they 
have to wait for the whole signal data to be stored before 
processing them. The non-real-time algorithms are not 
suitable for the macro-motion detection, which commonly 
requires a real-time trajectory tracking. 

For the real-time algorithms, the two-order moving target 
indication (TOMTI) [14], the accumulate average 
background subtraction (AABS) algorithm, the moving 
average background subtraction (MABS) algorithm,  and the 
exponential average background subtraction (EABS) 
algorithm [9, 11, 12], have been studied in previous works. 
The TOMTI is designed based on the estimation of the 
changes of the echo. The AABS, the MABS, and the EABS, 
are based on the estimation of the stationary clutter. 

These previous real-time algorithms fail to preserve the 
slow-time motion signal effectively. According to the 
magnitude response (see Fig. 6 (a)), the motion signal, 
especially its low-frequency component, will be suppressed 
by the TOMTI. The non-linear phase response of the MABS 
(see Fig. 6 (b)) will result in a waveform distortion of the 
motion signal, e.g., tailing, which also can be seen in the 
output of the AABS and the EABS (Fig.4 of [9]). In [9], an 
adaptive tap-length BS algorithm was proposed, which can 
effectively avoid tailings but requires more computation. 

The TOMTI, the MABS and the EABS indeed are 
slow-time filtering methods, although their derivations are 
not based on the filter design theory. In this paper, a 
slow-time high-pass linear-phase filter (HLF) is designed to 
process the raw echo samples in slow-time. In order to 
remove the stationary clutter without suppressing the motion 
signal, the HLF should be a high-pass filter (see Fig. 6 (a)). In 
order to preserve the waveform of the motion signal, the HLF 
should be linear-phase (see Fig. 6 (b)). 

C. Experimental results of the signal preprocessing 
Parameter settings of the experimental system are given in 

Table I. Fig 7 shows the rectangle frequency window of the 
FTFW, and the impulse response of the FIR (finite impulse 
response) HLF, which are used in the experiment. 

Experimental results of the raw echo samples and the 
processed samples, where a person firstly walks towards and 
then away from the radar, are presented in Fig. 8 (a) and (b), 
respectively. 

Compared with the MABS (Fig. 8 (d)), whose output has 
tailings, the HLF shows a good performance (Fig. 8 (c)). 

 

TABLE I  PARAMETER SETTINGS OF THE EXPERIMENTAL SYSTEM 

Parameter Value 

Pulse generator (1st order Gaussian pulse) 
Lower −10dB cutoff frequency 0.45GHz 
Upper −10dB cutoff frequency 3.555GHz 
Output power −14dBm 
Sampling system 
Fast-time sampling frequency 𝑓𝑓𝑓𝑓𝑓𝑓 20GHz 
Slow-time sampling frequency 𝑓𝑓𝑠𝑠𝑓𝑓  20Hz 
Total sampling points in fast-time 𝑁𝑁𝑓𝑓𝑓𝑓 850 
Antenna 
Bandwidth 0.520~5.475GHz 

 

 
Fig. 7 (a) The rectangle window used in the FTFW. (b) The impulse 
response of the FIR HLF, whose magnitude response and phase 
response have been presented in Fig. 6. 
 

Fig. 8 (a) Experimental result of raw echo samples. (b) Experimental 
result of processed samples. (c) A zoomed view of the corresponding 
section from (b). (d) Experimental result of processed samples when the 
MABS is adopted as the slow-time signal processing technique. 
 

 
Fig. 6  (a) Magnitude responses of the TOMTI, the MABS, and the HLF, 
and the magnitude spectrum of a slow-time motion signal. (b) Phase 
responses of the MABS and the HLF. 
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IV. THRESHOLD DECISION 
In previous works [9, 12], the macro-motion was identified 

by manual inspection from the processed echo samples, where 
the strong stationary clutter had been removed effectively. 
There appears to be little relevant work in offering a 
threshold-decision method, which is useful in applications 
requiring automatic detection. In this section, a fast-time 
energy detector [13] is offered to detect the macro-motion. 
According to Eq. 1 of [13], we need firstly compute the signal 
energy, and then normalize it by the noise power. In fast-time, 
the test statistic of the energy detector for the macro-motion 
signal can be represented as 

𝐿(𝑛𝑛0) =
∑ (𝑠𝑠[𝑚𝑚])2𝑛0+∆𝑛−1
𝑛=𝑛0

𝜎�2
,            (6) 

where 𝑠𝑠[𝑛𝑛] denotes a path of fast-time processed samples,  𝑛𝑛0 
denotes the initial time of the integration, ∆𝑛𝑛 denotes the time 
interval of the integration, and 𝜎�2 is a noise power estimate. 

In fast-time, the output of the MS algorithm in Fig. 5 
mainly contains the echo of the radar impulse and the noise, 
which is manifested in Fig. 9 (a) from the angle of the 
fast-time frequency spectrum. Similar to the noise power 
estimator 1 based on the slow-time FFT proposed in [6] (Eq. 
15 and 16 of [6]), a fast-time-FFT-based estimator of the 
noise power is derived, from the fact that there exists a 
frequency band in fast-time that only contains the noise, e.g., 
the frequency band of 𝑓𝑓0~𝑓𝑓1 shown in Fig. 9 (a), as follows, 

𝜎�2 =
∑ |𝑋[𝑘]|2𝑘1
𝑘=𝑘0

𝑁𝑓𝑡(𝑘1−𝑘0+1)
,              (7) 

where 𝑋[𝑘] denotes the fast-time FFT of the output of the MS 
algorithm, 𝑘0 = �𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓0 𝑓𝑓𝑓𝑓𝑓𝑓⁄ � , 𝑘1 = �𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓1 𝑓𝑓𝑓𝑓𝑓𝑓⁄ � , and ⌊𝑥⌋ 
equals the nearest integer less than or equal to 𝑥. 

The experimental result of the threshold decision method 
is presented in Fig. 9 (b). In the near range cells, the crosstalk 
of the radar system produces many false alarms, which can be 
prevented by setting a larger threshold in these cells. 

 

V. CONCLUSION 
In this paper, the preprocessing algorithms and the 

threshold decision method for the macro-motion detection 
using UWB impulse radar have been studied. First, by a 
frequency domain analysis, the slow-time motion signal has 
been shown to be a bandpass signal. Second, in order to avoid 
the reduction of the measuring range caused by the fast-time 
filtering, the FTFW has been proposed to process the echo 
samples in fast-time, and in order to preserve the slow-time 
motion signal effectively, the HLF has been proposed to 
process the echo samples in slow-time. Third, a threshold 
decision method based on the energy detector structure has 
been presented to locate the human body by detecting the 
human macro-motion. 
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Fig. 9  (a) Fast-time frequency spectrum from an experimental output of 
the MS algorithm in Fig. 5. (b) Experimental result of the proposed 
threshold decision method, where ∆𝑛𝑛 = 100, 𝑓𝑓0 = 5GHz, 𝑓𝑓1 = 10GHz, 
the threshold is 0.2, and the red region indicates that the macro-motion 
signal is identified. 
 
1 The estimator proposed in [6] cannot be used in the macro-motion 
detection. According to the conclusion of section II, the energy of the 
motion signal spreads over a quite wide frequency range in slow-time, 
resulting that we cannot find such a frequency band in slow-time that 
contains noise only, which is necessary for the noise power estimation 
method proposed in [6]. 
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