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Abstract— This paper reports on a novel model based on
convex optimization methods for the analysis of the skin
conductance (SC) as response of the electrodermal activity
(EDA) to affective stimuli. Starting from previous assessed
methodological approaches, this new model proposes a decom-
position of SC into tonic and phasic components through the
solution of a convex optimization problem. Previous knowledge
about the physiology of the EDA is accounted for by means
of an appropriate choice of constraints and regularizers. In
order to test the effectiveness of the new approach, an exper-
imental session in which 9 healthy subjects were stimulated
using affective pictures gathered from the IAPS database was
designed and carried out. The experimental session included
series of negative-valence high-arousal images and series of
neutral images, with an inter-stimulus interval of about 2
seconds for both neutral and high arousal pictures. Next, a
statistical analysis was performed on a set of features extracted
from the phasic driver and the tonic signal estimated by the
model. Results showed that the phasic driver extracted from
the model was able to strongly distinguish arousal sessions from
neutral ones. Conversely, no significant difference was found for
the tonic components. This experimental findings are consistent
with the literature and confirm that the phasic component is
strictly related to changes in the sympathetic activity of the
autonomic nervous system. Although preliminary, these results
are very encouraging and future work will progress to further
validate the model through specific and controlled experiments.

I. INTRODUCTION

The electrodermal activity (EDA) represents alterations in
the electrical properties of the skin, e.g. skin conductance
(SC), related to the level of psychologically-induced sweat-
ing. Sweat glands, and in particular the eccrine sweat glands
responsible for the psychological response, are innervated
by the sympathetic branch of the autonomic nervous system
(ANS). Therefore, the EDA signal is considered a good and
viable way to monitor the ANS.

There are two main components to the overall complex re-
ferred to as EDA, with different time scales and relationships
with the triggering stimuli: tonic and phasic. The tonic EDA
is given by the skin conductance level (SCL) which repre-
sents the slow-varying baseline level of the SC. Variations
in the SCL are thought to reflect general and slow changes
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in the ANS dynamics. The phasic EDA is represented by a
fast changing component, called skin conductance response
(SCR), reflecting the evoked response of the eccrine sweat
glands to an external stimulus. The SCR is defined as the
SC transient arising within a predefined window (1–5 s)
after the stimulus onset and satisfying a minimum amplitude
criterion (0.05 µS) [1]. Recent evidences suggest that these
two components rely on different neural mechanisms [2] and,
consequently, that both convey relevant and non-redundant
information about the ANS activity.

The SC can be easily measured by applying a constant
0.5 V potential across two points of skin contact, usually
on the surface of the hands or more specifically of the
fingers, where there is a high concentration of eccrine sweat
glands [3], [4]. EDA is used in a wide range of experimental
setups because it is a relatively straightforward measure
providing valuable information about the ANS response to a
broad range of external stimuli. In particular, SC analysis is
commonly used to quantify the levels of arousal associated
to emotional and cognitive processes [2], [5], [6].

A main limitation of EDA is that it imposes a minimum
inter-stimulus interval (ISI), i.e. the temporal distance be-
tween consecutive stimuli. This is due to the fact that, in
a typical SCR, the conductance level initially increases and
then asymptotically decreases back to the baseline level fol-
lowing a slow exponential decay. Most authors recommend a
minimum ISI of 10-20 s [2], [7] because for shorter intervals
—like those employed in many experimental paradigms in
cognitive neuroscience (1–2 s)— consecutive SCRs overlap.
To overcome this limitation, several mathematical solutions
have been developed to decompose the phasic EDA into
individual SCRs associated to each stimulus. One of the
first EDA model was proposed by Lim et al. [8]. They
used a four-parameter model (extendible to eight parameters)
in order to fit SC data and perform a decomposition in
its components. The method requires visual inspection to
establish the best model for the selected segment. Alexander
et al. [9] introduced a method based on a deconvolution
process in order to overcome the need for visual inspec-
tion. Their model assumes that the SC is the output of
the convolution between a biexponential impulse response
function (IRF) and discrete bursting episodes representing
the sudomotor nerve activity (SMNA). Assuming that the
IRF is known and time-invariant, their method estimates
the SMNA from the measured SC. More recently, Bach
et al. [10] adopted a similar linear time-invariant (LTI)
convolution model and extracted the IRF by means of PCA
(principal component analysis) across all available partic-
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ipants and trials. The canonical IRF was then fitted with
a gamma distribution. Benedek and Kaernbach [1] applied
a nonnegative deconvolution procedure based on the long
division algorithm to enforce the estimated SMNA to be
compact and nonnegative. Assuming the Edelberg model of
the dynamic law of diffusion of the sweat, they adopted a
biexponential IRF called Bateman function. In this paper
we propose to decompose the EDA using a novel method
based on convex optimization, a tool that has been applied
to a steadily increasing number of applications [11]. This
approach allowed the development of a new model that can
be fitted efficiently and whose solution —thanks to the use
of constraints and sparsifying regularizers— incorporates the
previous knowledge about the problem.

II. ALGORITHM

A. Convex Optimization

A set K ∈ R
n is convex if:

λx+ (1− λ)y ∈ K (1)

∀ x, y ∈ K and λ ∈ [0; 1]. A function is convex if:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2)

∀ x, y ∈ K and λ ∈ [0; 1]. The meaning of the inequality
(2) is that, for any two points x and y in the domain of the
function, the segment between (x; f(x)) and (y; f(y)) lies
above the graph of the function. Equivalently, we can define
a convex function as a function whose epigraph is a convex
set [11].

Considering a standard optimization problem:

minimize f0(x)

subj. to fi(x) ≤ 0 i = 1, . . . ,m ,
(3)

the optimal choice is the one minimizing the objective
function f0(x), which represents the cost of choosing x,
while simultaneously satisfying the constraints fi(x) ≤ 0.
An optimization problem is convex when both the objective
and the constraint functions are convex. In the context of
mathematical optimization, the most important consequence
of convexity is that necessary conditions for local optimality
are also sufficient for global optimality. Moreover, important
categories of convex optimization problems can be solved
efficiently (this is rarely the case for general nonconvex
problems).

A special subclass of convex optimization problems is
represented by least-square problems where the goal is the
unconstrained minimization of a quadratic objective function
‖Ax− b‖

2

2
. For this class of problems —frequently arising

in regression analysis, parameter estimation and data fitting
methods [11]— an analytical solution exists. An important
statistical interpretation is that the least-square solution co-
incides with the maximum likelihood estimation in the case
of a linear model corrupted by additive Gaussian noise. Reg-
ularization, e.g. adding a norm of the optimization variable
x as an extra term to the cost function, can be applied to
least-squares problems to prevent overfitting (L2-norm) or

to favour sparse solutions (L1-norm). While in the former
case an analytical solution exists, in the case of the L1-
regularization the problem can be cast as a quadratic program
(QP), i.e. a convex problem with quadratic cost function and
affine constraints:

minimize
1

2
xTP x+ qTx+ r

subj. to Hx− g ≤ 0 and Ux− v = 0 .
(4)

B. EDA Model as QP Problem

Our model assumes that the observed SC is the sum of
a slow tonic component, the phasic activity, and an additive
noise term. We parametrize the tonic component by means
of a cubic spline with equally-spaced knots every 10 s. The
phasic activity, i.e. the SCR component, is modelled as the
convolution between the sudomotor nerve activity and an
impulse response h(t) shaped like a biexponential Bateman
function [12]:

h(t) = (e−
t

τ1 − e−
t

τ2 ) u(t) (5)

where u(t) is the unitary step function. As mentioned before,
a biexponential function was previously proposed by Alexan-
der et al. [9] as a model for the SCR shape and has a simple
interpretation in terms of a bicompartmental pharmacokinetic
diffusion model [12].

In mathematical terms, we decompose the vector y of
measured SC data as:

y = Ap+Bℓ+ Cd+ ǫ , (6)

where:

• y is the sampled SC raw data y = [y1, y2, . . . , yN ]T;
• A is a sparse Toeplitz matrix with time-reversed, sam-

pled, truncated copies of h(t) along the diagonal band;
• p is a sparse vector with positive entries representing

the sampled SMNA;
• Ap is the phasic component obtained as the result of

the convolution between the sudomotor nerve activity p
and the biexponential IRF;

• B is a tall matrix whose columns are the cubic B-spline
basis functions;

• ℓ is the vector of spline coefficients;
• C is an N × 2 matrix with Ci,1 = 1 and Ci,2 = i/N ;
• d is a vector made of an offset term and a slope

coefficient for the linear trend;
• t = Bℓ+ Cd is the tonic component;
• ǫ is a vector of i.i.d. Gaussian noise terms incorporating

model prediction errors as well as measurement errors
and artifacts.

In order to estimate the unknown vectors p, ℓ, and d
from the available data y, we consider the optimization
problem where the objective function to be minimized is
a quadratic measure of misfit or prediction error (ǫ) between
the observed data and the values predicted by the model.
Moreover, to account for the prior knowledge —including
assumptions about the spiking nature and nonnegativity of
the driving input (p)— constraints as well as sparsifying
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and regularizing terms were added. A successful approach to
sparse deconvolution involves the regularization of the input
variable by means of an L1-norm cost function [13]–[15].
We therefore obtain the optimization problem:

minimize
1

2
‖Ap+Bℓ+ Cd− y‖

2

2
+λ ‖p‖

1
+
γ

2
‖ℓ‖

2

2

subj. to p ≥ 0 .
(7)

Please note that the model has two parameters, λ and γ,
acting as regularizers for the phasic and tonic components,
respectively. A large λ (stronger L1 regularization of p)
yields a sparser estimate with most noise-induced spurious
spikes suppressed but also more signal distortion (i.e. attenu-
ation of genuine activations). Conversely, a small λ produces
a less distorted but noisier solution. Concerning γ, higher
values mean a stronger penalization of ℓ, i.e. a smoother tonic
curve. After some matrix algebra, the optimization problem
(7) can be re-written in the standard QP form of (4) and
solved efficiently using one of the many solvers available.

III. MATERIALS AND METHOD

This section describes the experimental protocol and the
optimization process applied to the acquired SC dataset.

A. Experimental Protocol

In this study, we enrolled nine healthy subjects (aged 20–
32; 4 females) who voluntarily underwent an experiment of
induced emotions. All subjects signed a written informed
consent prior to taking part to the study, and the protocol was
approved by the local Ethics Committee. The experimental
protocol started with a 5-minute rest period with eye closed,
followed by 6 minutes of visual emotional stimuli selected
from the international affective picture system (IAPS) [16].
The slideshow alternated 30 negative-valence high-arousal
images and 30 neutral images with an ISI of 2 s. The negative
emotional images were chosen according to the following
criteria: arousal score > 6.7; valence < 4.3. During the
whole experimental session the SC signal was acquired using
a BIOPAC MP150 physiological acquisition system.

B. EDA Processing

The convex-optimization-based EDA model (cvxEDA)
described in II-B was applied to each participant’s SC signal.
Rather than assuming a canonical IRF for all subjects, we
assumed τ1 = 0.7 and adapted the parameter τ2 on a per-
subject basis. After fitting cvxEDA models for several values
of τ2 ∈ [2.0, 4.0], we chose the one minimizing the L0-
“norm”, i.e. leading to the sparsest solution. The values
λ = 0.01 and γ = 1 were employed for all subjects.
These values were chosen through an exploratory analysis
on simulated data and real signals from a different dataset.

To validate the model and verify that the recovered compo-
nents carry meaningful information about the ANS activity,
we extracted a set of features from the phasic driver p an
the tonic signal t. For the phasic activity we computed
the features over the 2-second non-overlapping windows
related to each image. For the slower tonic component we

TABLE I

FEATURES EXTRACTED FROM EDA PHASIC AND TONIC COMPONENTS

Feature Description
MAX-T Maximum value of the tonic curve t

MAX-P Maximum value of the SMNA p

Mean-T Mean value of the tonic curve t

Mean-P Mean value of the SMNA p

STD-T Standard deviation of the tonic curve t

STD-P Standard deviation of the SMNA curve p

adopted longer (20 s) windows assuming that its upper cut-
off frequency can be considered 0.05 Hz [17]. In Table I,
the feature set is summarized along with the corresponding
description.

C. Statistical Analysis

After rejecting the hypothesis of Gaussianity of the fea-
tures (p < 0.05 given by Kolmogor-Smirnov test), we
conducted a non non-parametric statistical inference analysis.
An inter-subject analysis was performed to compare the
features related to the arousal sessions and those related
to neutral sessions. Statistical significance was assessed by
means of a Mann-Whitney U test.

IV. EXPERIMENTAL RESULTS

For all subjects, the cvxEDA model produced the expected
results: the SC data (Fig. 1A) was decomposed into two
signals, the sparse component p and the smooth one t.
Specifically, we interpret the former (Fig. 1B) as the activity
of the sudomotor nerve and the latter as the activity of the
tonic component (Fig. 1C).

The features extracted from the fitted phasic driver showed
a strong significant statistical difference between the two
types of visual stimulation (see Tab. II). As expected, an
increased phasic activity is present during the presentation
of the high-arousal images. Instead, the tonic features were
unable to distinguish the neutral session from the arousal
elicitation.

V. DISCUSSION AND CONCLUSIONS

In this study we propose a novel approach for the analysis
of the EDA based on convex optimization methods. The
model builds upon previous methodological approaches and
addresses the problem of overlapping responses encoun-
tered in experimental paradigms involving short ISIs. Our

TABLE II

MEDIAN ± MAD (MEDIAN ABSOLUTE DEVIATION FROM THE MEDIAN)

OF EACH FEATURE IN AROUSAL AND NEUTRAL SESSIONS

Feature Neutral Arousal
MAX-T 1.66±0.44 1.99±0.52

MAX-P∗∗∗ (9.99±9.96) · 10−8 (6.05±6.04) · 10−7

Mean-T 1.60±0.40 1.89±0.47
Mean-P∗∗∗ (1.74±1.73) · 10−8 (6.50±6.49) · 10−8

STD-T∗ (2.49±1.73) · 10−2 (6.23±3.48) · 10−2

STD-P∗∗∗ (2.22±2.21) · 10−8 (1.04±1.02) · 10−7

Statistically significant differences are indicated
by ∗ (p < 0.05) and ∗∗∗ (p < 0.001).
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Fig. 1. Example of application of the cvxEDA decomposition procedure
to the SC signal recorded during the visual emotional stimulation for a
representative subject. Panel A: raw SC signal; panel B: sparse phasic driver
component p; panel C: the slow tonic component t.

model decomposes the SC signal into a tonic component,
parametrized by a cubic B-spline, and a phasic component
that is the convolution of the sudomotor nerve activity with a
Bateman IRF. The nonnegativity and sparsity of the SMNA
driver are enforced by means of an appropriate choice of the
constraints and through the use of an L1-norm regularizer.
Physiologically-plausible temporal scale and smoothness of
the tonic input signal are accomplished through an adequate
choice of the spacing between the knots of the spline and
through an L2 regularization of the spline’s coefficients.
Unlike other methods (for example those relying on the
long division algorithm), our approach includes an additive
noise term which incorporates modelling errors as well
as measurement noise and artifacts. The unknown inputs
(tonic and phasic EDA) can be obtained by minimizing a
regularized version of the variance of this noise term.

This new approach was tested on recordings from an
experimental paradigm in which 9 subjects were stimulated
using affective pictures gathered from the IAPS database.
The experimental session included series of negative-valence
high-arousal images and series of neutral images. The ISI
was set to 2 s for both neutral and high arousal pictures. As
expected, the cvxEDA decomposition procedure retrieves a
sparse component and a smooth one. In order to verify the
effectiveness of the model and if the recovered components
carry meaningful information about the ANS activity, a set of
features were extracted from the phasic driver and the tonic
signal. The statistical analysis of these features showed that
the phasic driver estimated through the proposed method-
ology was able to significantly discern the two different
kinds of stimuli. No significant difference was found for
the tonic component. This finding may be explained by the
fact that the tonic component is not stimulus-related and
the short duration of the emotional stimulation (the arousal

session was interrupted each minute by a minute of neutral
images) may not be sufficient to induce significant changes
in sympathetic tone which is characterized by slow dynamics
(< 0.05 Hz).

Although preliminary, these encouraging results confirm
that our EDA model based on convex optimization is able
to produce a decomposition of the EDA which overcomes
the issue of overlapping SCRs. The solution incorporates the
previous knowledge about the phasic and tonic components
without having to resort to heuristics and ad-hoc solutions.
An additional advantage of casting our model as a convex
optimization problem is that, once the problem is formalized,
a globally optimal solution can be efficiently found using
existing solvers.
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