
  

 

Abstract— Intracranial volume is an important measure in 
brain research often used as a correction factor in inter subject 
studies. The current study investigates the resulting outcome in 
terms of the type of software used for automatically estimating 
ICV measure. Five groups of 70 subjects are considered, 
including adult controls (AC) (n=11), adult with dementia (AD) 
(n=11), pediatric controls (PC) (n=18) and two groups of 
pediatric epilepsy subjects (PE1.5 and PE3) (n=30) using 1.5 T 
and 3T scanners, respectively. Reference measurements were 
calculated for each subject by manually tracing intracranial 
cavity without sub-sampling. Four publicly available software 
packages (AFNI, Freesurfer, FSL, and SPM) were examined in 
their ability to automatically estimate ICV across the five 
groups. Linear regression analyses suggest that reference 
measurement discrepancy could be explained best by SPM 
ሾࡾ ൌ . ૠ;  ൏ . ] for the AC group, Freesurfer [ࡾ ൌ
. ; 	 ൌ . ] for the AD group, AFNI [ࡾ ൌ . ૢૠ;  ൏
. ] for the PC group and FSL [ࡾ ൌ . ; 	 ൌ . ] for the 
PE1.5 and [ࡾ ൌ . ; 	 ൏ . ] for PE3 groups. The study 
demonstrates that the choice of the automated software for ICV 
estimation is dependent on the population under consideration 
and whether the software used is atlas-based or not. 

I. INTRODUCTION 

Intracranial volume (ICV), sometimes referred to as total 
intracranial volume (TIV), refers to the estimated volume of 
cranial cavity as outlined by the supratentorial dura matter or 
cerebral contour when dura matter is not clearly detectable 
[1, 2]. ICV is often used in studies involved with analysis of 
the cerebral structure under different imaging modalities, 
such as Magnetic Resonance (MR) [3], MR and Diffusion 
Tensor Imaging (DTI) [4], MR and Single-Photon Emission 
Computed Tomography (SPECT) [5], Ultrasound  [6] and 
Computerized Tomography (CT) [7, 8]. ICV consistency 
during aging [9] makes it a reliable tool for correction of 
head size variation across subjects in studies that rely on 

 
S. Sargolzaei and M. Goryawala are with the center for Advanced 

Technology and Education (CATE), Florida International University, 
Miami, FL 33174 USA (phone: 303-348-4106; e-mail: ssarg004@fiu.edu). 

M. Cabrerizo is the Mark Edwards Assistant Professor in Neuroscience 
and Learning with the center for Advanced Technology and Education 
(CATE), Department of Electrical and Computer Engineering, Florida 
International University, Miami, FL 33174 USA. 

G. Chen is with the scientific and statistical computing core at NIMH/ 
NIH/ HHS, Bethesda, MD 20892 USA.  

P. Jayakar is with the Brain institute at Miami Children’s Hospital, 
Miami, FL 33155, USA. 

R. Duara and W. Barker are with the Wien Center for Alzheimer’s 
Disease and Memory Disorders, Mount Sinai Medical center, Miami Beach, 
FL 33140. 

M. Adjouadi is Professor and Director of the Center for Advanced 
Technology and Education (CATE), Department of Electrical and 
Computer Engineering, Florida International University, Miami, FL 33174 
USA. 

morphological features of the brain. Normalization for 
varying head sizes reduces the bias on the study results [10]. 
ICV, along with age and gender, are reported as covariates 
to adjust for regression analysis in investigating a lot of 
progressive neurodegenerative brain disorders, such as 
Alzheimer’s disease [10] aging and cognitive impairment 
[11]. ICV has also been utilized as an independent voxel 
based morphometric feature to determine characterizing 
atrophy patterns in subjects with mild cognitive impairment 
(MCI) and Alzheimer’s disease (AD) [12]. ICV is also 
viewed as a critical normalization factor while analyzing 
neurological diseases such as Alzheimer [10]. 

AFNI [13], Freesurfer [14], FSL [15] and SPM [16] are 
widely accepted and well-known software packages in 
neuroimaging studies. These different software packages 
come with specific subroutines for estimating ICV. In 
assessing the reliability and accuracy of each of these 
software packages, a first challenge is in determining if the 
outcome is consistent over the variability exhibited with 
respect to age, strength of the scanner used, slice sampling 
considered, controls and patients in the study, and the type of 
neurological disorder is under study. The main focus of this 
study is in analyzing the accuracy of publicly available 
software packages (AFNI version 2011-12-21-1014, FS 
version 5.1.0, FSL version 5.0 and SPM version 8) for ICV 
estimation in adults (controls and patients with AD) and 
children (controls and patients with epilepsy).  

II. MATERIALS AND METHODS 

A. Subjects and Images 

Different groups of control subjects and patients 
diagnosed with a neurological disorder from pediatric and 
adult populations were considered. The study was approved 
by the local institutional review board (IRB) and informed 
consent forms were provided from the subjects or their legal 
representatives. Table 1 provides a summary of the dataset 
with the different groups considered in this study: Pediatric 
Epilepsy with 1.5T MRIs, Pediatric Epilepsy with 3T MRIs 
[17], Pediatric Control, Adult with Dementia, and Adult 
Control. 

B. Reference ICV Estimation (ܥܫ ܸ) 

Reference ICV (ܥܫ ܸሻ measurements were acquired 
manually by from T1-weighted image volumes, which were 
performed using an AFNI plugin, by allowing the user to 
draw volumetric masks. T1-weighted image volumes from 
each subject were loaded into AFNI as an underlay image. 
An overlay mask was drawn following every slice protocol 
to highlight the voxels that belong to ICV [18]. The mask 
mimicked the segmented boundary of the dura matter. The 
ܥܫ ܸ measure is then calculated by counting the total 
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TABLE I.  A SUMMARY OF THE DATASET USED FOR THE STUDY 

 Number of subjects Age Diagnosis Field Strength (ܶ) Slice Thickness (݉݉) 
 Male Female Male Female 
PE1.5 8 9 8.7±7.1 10.6±6.6 Epilepsy 1.5 1.6 
PE3 5 8 11.2±2.5 13.6±2.9 Epilepsy 3 4.0 
PC 10 8 10.6±0.7 11.4±1.7 Control 3 1.0 
AD 5 6 83.6±7.2 78.2±10.7 Dementia 1.5 1.0 
AC 2 9 70.5±3.5 70.7±7.0 Control 1.5 1.0 

 
number of voxels within the mask multiplied by the volume 
of a single voxel. Figure 1 shows one sagittal slice of T1 
weighted image volume and the reference measurement 
highlighting the ICV segmentation for the same slice for a 
random subject from the dataset.  The arrows in Figure 1 are 
drawn pointing to the dura border defining the ICV. 

 
Figure 1.  Reference ICV segmentation for one sagittal slice of a random 
subject, showing the T1 weighted image (left) and the result of manual ICV 
segmentation. Arrows in the left image point to the dura matter which is 
being used as boundary marker for segmenting the ICV. 

C. Automatic ICV Estimation Methods 

T1-weighted image volumes were used as input to all the 
automated approaches for estimating ICV. No other external 
intervention was involved and a set of default parameters 
(defined by the software) without any tuning were chosen 
only when required by the software package under 
consideration. The ܥܫ ܸிேூ (AFNI version 
AFNI_2011_12_21_1014) [13] has a fully automated 
approach (3dSkullStrip, December 2012 released version) to 
segment the brain from surrounding tissue, which serves as 
an estimation of the intracranial region segmentation. The 
approach implemented here is an updated version of Brain 
Extraction Tool (BET) algorithm that corrects for non-
uniformity artifacts and expands a spherical surface 
iteratively until all the brain tissue is encircled, but excluding 
the eyes. Brain extracted images were overlaid on top of the 
subject’s T1-weighted images and the total number of 
overlap voxels were counted using another AFNI program, 
3dmaskave. Automated ICV estimation from AFNI (ܥܫ ܸிேூ) 
was calculated by multiplying the single voxel volume by the 
number of voxels found from 3dmaskave. All steps were 
merged into a single script to maintain the fully-automated 
nature of ICV estimation without external intervention. 

The ܥܫ ிܸௌ (Freesurfer version 5.1.0): Freesurfer estimate 
of ICV is atlas-based estimation considering the fact that 
determinant of the registration matrix used to register subject 
image to atlas space includes information about 
corresponding volume changes by applying the registration. 
Freesurfer default atlas is made of 40 adult subjects including 
10 subjects diagnosed with Alzheimer’s disease (AD) [18]. 
Since the ICV of the atlas was given, the FreeSurfer estimate 
of subject’s ICV, ܥܫ ிܸௌ, was calculated by dividing the ICV 

of the atlas by the determinant of the affine registration 
matrix driven through the “recon-all” pipeline implemented 
by FreeSurfer routine [18, 19]. “recon-all” is a fully 
automated image processing pipeline in FreeSurfer which 
performs cortical reconstruction process.  

The ܥܫ ிܸௌ (FSL version 5.0): The ENIGMA protocol for 
brain and intracranial volumes1 as implemented here to 
estimate ICV using FSL,	ܥܫ ிܸௌ, involves an MNI atlas-
based estimation procedure. T1 weighted image volume of 
each subject brain was linearly aligned to MNI152 space. The 
ܥܫ ிܸௌ measure was then calculated by dividing ICV of the 
MNI152 brain by the determinant of the affine registration 
matrix. FSL estimation of ICV involves stripping the images 
from the skull using BET [20]. The protocol employs a two 
steps BET with an intermediate FAST (FMRIB’s Automated 
Segmentation Tool2) to correct for bias. The fractional 
intensity threshold was set to default value of 0.5 and 
threshold gradient was set to default value of 0. ܥܫ ௌܸெ 
(SPM version 8): VBM toolbox3 of SPM uses template 
probability map and segments tissues into four clusters, gray 
matter, white matter, CSF and other, in native space [16, 18, 
19]. SPM estimate of ICV were obtained by summing the 
volume of first three clusters together. 

D. Statistical Analysis 

The means of ܥܫ ܸிேூ, ܥܫ ிܸௌ, ܥܫ ிܸௌ and ܥܫ ௌܸெ were 
tested against the mean of ܥܫ ܸ for each of PE1.5, PE3, 
PC, AD and AC groups through post hoc t-tests under the 
general linear model, using R package PHIA [21]. All p-
values less than the significance level of 0.01 (Bonferroni 
adjusted) were considered to show the existence of a 
significant difference. Mean related percentage of absolute 
difference (MRPAD) in ICV estimation within each group 
were calculated using equation (1). 

ܦܣܴܲܯ ൌ
ଵ


∑

ቚ௱ೌೠቚ

ூೝ
ൈ 100

ୀଵ      (1) 

where ߂௨௧	 is the error of the automated software in ICV 
measurement from the reference measurement; ܽݐݑ 
represents the automatic software employed: AFNI, FS, FSL 
and SPM; ݊ is the number of subjects within the group. The 
ܴଶ statistics were computed through multiple linear 
regression analysis. Comparative reliability assessment of 
automated tools based on ܦܣܴܲܯ alone could be biased due 
to the fact that ܦܣܴܲܯ is not sensitive to the segmentation 
accuracy. To account for the segmentation error in a more 
effective way, metrics of Dice Coefficient (DICE), %Under 
(percent of underestimation) and %Over (percent of 
overestimation) caused by the automatic software were 

 
1 www.enigma.ini.usc.edu. 
2 www.fsl.fmrib.ox.ac.uk/fsl. 
3 www.fil.ion.ucl.ac.uk/~john/misc/VBMclass10.pdf 
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considered to overcome the issue of reliability assessment 
only based on absolute error. 

III. RESULTS AND DISCUSSION 

Paired t-test statistics comparing within-subjects ICV 
estimated from each automated tool and reference for each 
group along with MRPAE values are given in Table II. Table 
III provides the segmentation accuracy assessment of each 
automated tool. For comparison purposes, tools are grouped 
into Atlas based and Non-Atlas based estimation considering 
the protocol they follow for estimating ICV. The p-value less 
than the significance level of 0.01 (Bonferroni adjusted) were 
highlighted to show the existence of statistically significant 
differences. The sign of t statistics indicates how the 
automated measurements are biased comparing with respect 
to the reference, and the p value shows if the bias is 
significant or not. In the current study, a negative t statistics 
indicates an upward bias and vice versa, whereas a p-value 
higher than threshold (0.01) is deemed as a good measure as 
there is no statistically significant mean difference between 
the two compared groups. In light of this, it can be seen from 
Table II that all automated measurements had no statistically 
significant difference in means as compared with the 
reference for PE 1.5 groups, whereas the opposite is seen for 
PE 3 group where all automated measurements turned out to 
be significantly different from  reference ICV measurement. 

For PE1.5 group, statistical testing does not show 
significant difference for software packages except for FSL  
which could be due to the small sample size; however, 
variability in reference ICV is best explained by FSL 
(ܴଶ ൌ 0.61) which has the lowest MRPAD value among the 
software types used. FS and SPM failed in estimating ICV 
for part of the PE1.5, which we believe were partly due to the 
low resolution of the MRI images.  
For PE3 group, empirical observation supports that all tools 
(AFNI:	 ൏ 0.01, FS:	 ൏ 0.01, FSL:	 ൏ 0.01, and 
SPM:	 ൏ 0.01;) underestimated the reference ICV. FSL 
(ܴଶ ൌ 0.6)  and AFNI (ܴଶ ൌ 0.57) are more able to explain 
the variance of reference ICV within the group.  

The situation remains the same for PC group where all 
tools (AFNI:  ൏ 0.01, FS:	 ൏ 0.01, FSL:	 ൏ 0.01, and 
SPM:	 ൏ 0.01;) significantly biased the reference ICV 
downward, with AFNI (ܴଶ ൌ 0.97) and FSL (ܴଶ ൌ 0.95) 
providing a better fit in modeling reference ICV. In general, 
FSL showed to be a better candidate for pediatric 
populations. The introduced bias may be due to the scaling 

factor which FSL employs to translate the estimated ICV in 
the atlas space into the native space. 

For AD group, FSL ( ൏ 0.01) overestimates the ICV 
whereas SPM ( ൏ 0.01) underestimates it. FS (ܴଶ ൌ0.46) 
and FSL (ܴଶ ൌ0.46) resulted in a similar ܴଶ value in 
predicting reference ICV, however FS biases less the 
reference ICV than FSL. FS showed to work best among 
other automated tools in explaining the variance found in the 
reference ICV. Coefficient of determination for the fit 
generated by FSL was similar to the one for FS, with FS 
deemed a better tool due to the bias generated by FSL. 

For AC group, ICV measurements calculated using FSL 
) ൌ 0.01) upwardly biases the reference ICV estimates, but 
AFNI ( ൏ 0.01) and SPM ( ൏ 0.01) underestimate the 
reference ICV. FS (ܴଶ ൌ0.67) explains the variance of the 
reference ICV better than the other automated tools for AC 
group and has the lowest MRPAD value. 

IV. CONCLUSION 

Four publicly available software packages were contrasted 
against a manual reference to measure their reliability in 
automatically estimating ICV across different groups of 
subjects. The study emphasizes the importance in the choice 
of the right sampling period in the manual estimation of ICV 
and the selection of the right software tool in the automated 
estimation of ICV, which are shown to depend largely on the 
demographics of the targeted population, the imaging 
parameters of the MR machine, as well as the neurological 
disorder under study. The other important finding of the 
study was the proper setting of the parameters involved in 
the process of ICV estimation when they are required. Self-
tuning of the parameters for each dataset is highly suggested 
based on the finding of the study to reduce the bias in the 
automated ICV estimation. The current study serves as an 
initial framework for establishing and appropriate protocol 
in automatic ICV estimation under different imaging 
conditions and with different populations. 

Dataset with more number of subjects (specifically in 
PE1.5 group) would enhance the reliability of the statistics 
for future consideration. As ICV has gained its popularity and 
showed its significance in research area of Alzheimer [22, 
23] and epilepsy [24-26], the study could serve as an 
important guide for the researchers to choose the most 
effective measurement approach for the automated estimation 
of ICV. 

TABLE II.  PAIRED T-TEST STATISTICS COMPARING WITHIN-SUBJECTS ICV ESTIMATED FROM EACH AUTOMATED TOOL AND REFERENCE FOR EACH 
GROUP ALONG WITH MRPAD VALUES 

  PE1.5  PE3 PC AD AC

  Statistics  MRPAD  Statistics MRPAD Statistics MRPAD Statistics MRPAD  Statistics MRPAD

Non‐Atlas 
Based 

         

“Ref” vs “AFNI”  t ൌ 0.6 
p ൌ 0.58 

14.37  ܜ ൌ . ૢૠ
ܘ ൏ 0.01 

12.77
 

ܜ ൌ . ૠ
ܘ ൏ 0.01 

9.48
 

t ൌ 1.4
p ൌ 0.19 

13.29  ܜ ൌ . 
ܘ ൏ 0.01 

13.15

“Ref” vs “FSL”  ܜ ൌ . ૠ 
ܘ ൏ .  

12.57 
 

ܜ ൌ . ૢ
ܘ ൏ 0.01 

13.41
 

ܜ ൌ . ૠ
ܘ ൏ 0.01 

11.35
 

t = ‐10.19
ܘ ൏ 0.01 

91.8  t = ‐3.16
p ൌ 0.01 

41.74

Atlas Based           

“Ref” vs “SPM”  t ൌ 3.8 
p ൌ 0.018 

21.33  ܜ ൌ . ૠ
ܘ ൏ 0.01

16.64 ܜ ൌ . ૠ
p ൏ 0.01

20.37 ܜ ൌ . ૡ
ܘ ൏ 0.01

12.55  ܜ ൌ . 
ܘ ൏ 0.01

10.15

“Ref” vs “FS”  t ൌ 2.81 
p ൌ 0.048 

32.17  ܜ ൌ . 
ܘ ൏ 0.01 

43.9 ܜ ൌ . ૢ
ܘ ൏ 0.01 

30.35 t ൌ 1.8
p ൌ 0.1 

9.69 
 

t ൌ 1.63
p ൌ 0.13 

5.49
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TABLE III.  SEGMENTATION ACCURACY ASSESSMENT (DICE, %UNDER AND %OVER) OF EACH AUTOMATIC TOOL (AFNI, FSL, FS AND SPM) 

Non-Atlas Based AFNI FSL 
 DICE %Under %Over DICE %Under %Over 
PE1.5 0.92 9.05 7.26 0.94 5.05 5.99 
PE3 0.95 3.38 7.08 0.95 4.49 5.93 
PC 0.96 3.6 3.7 0.95 4.47 5.41 
AD 0.92 8.18 6.7 0.87 16.21 8.84 
AC 0.94 5.78 5.48 0.89 13.12 9.03 

Atlas Based FS SPM 
 DICE %Under %Over DICE %Under %Over 
PE1.5 0.94 6.13 6.15 0.95 5.73 2.5 
PE3 0.93 3.47 10.41 0.94 4.44 6.94 
PC 0.97 3.32 3.7 0.94 6.78 4.3 
AD 0.93 7.56 5.51 0.96 4.45 2.93 
AC 0.94 7.83 4.47 0.96 4.65 2.49 
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