
Interactive segmentation of white-matter fibers
using a multi-subject atlas

Nicole Labra 1,2, Miguel Figueroa1,2, Pamela Guevara1

Delphine Duclap 3, Josselin Houenou 3,4, Cyril Poupon 3 and Jean-François Mangin 3

1Dept. of Electrical Engineering 2 Center for Optics & Photonics 3 I2BM 4 INSERM
Universidad de Concepción Universidad de Concepción Neurospin, CEA U955 Unit

Concepción, Chile Concepción, Chile Gif-sur-Yvette, France Paris, France

Abstract— We present a fast algorithm for automatic segmen-
tation of white matter fibers from tractography datasets based
on a multi-subject bundle atlas. We describe a sequential ver-
sion of the algorithm that runs on a desktop computer CPU, as
well as a highly parallel version that uses a Graphics Processing
Unit (GPU) as an accelerator. Our sequential implementation
runs 270 times faster than a C++/Python implementation of a
previous algorithm based on the same segmentation method,
and 21 times faster than a highly optimized C version of
the same previous algorithm. Our parallelized implementation
exploits the multiple computation units and memory hierarchy
of the GPU to further speed up the algorithm by a factor of
30 with respect to our sequential code. As a result, the time
to segment a subject dataset of 800,000 fibers is reduced from
more than 2.5 hours in the Python/C++ code, to less than one
second in the GPU version.

I. INTRODUCTION

The study of white matter (WM) organization and struc-
ture is an important research area in the neuroscience study
of normal brain development, as well as neurological and
psychiatric disorders. Studies of different types of disorders
have been performed using this kind of approach [12].

Diffusion-weighted Magnetic Resonance Imaging
(dMRI) [8] techniques are the most used for the analysis
of human brain white matter in vivo. Several methods
have been proposed for the analysis of this kind of
data. Some methods can be performed by manual expert
regions of interest (ROI) placement [1], others use
unsupervised clustering [5], [2], and an increasing collection
of methods apply hybrid techniques by combining learning
or classification algorithms with anatomical information [10],
[9], [13]. In [4], an automatic WM segmentation based
on a multi-subject WM bundle atlas method is proposed.
This method produces good classification results because
the atlas embeds information about fiber shape, length and
position information, as well as inter-subject variability.

Some of these methods can deal with the new generation
of tractography datasets containing a huge number of fibers,
but suffer from long processing times. In some applications,
useful for neuroscience studies, the user needs to iteratively
explore the parameter space, or requires fast multi-subject
segmentation in order to find structural similarities between
fibers of different subjects. In order to satisfy this need for

medium and large tractography datasets (50,000 to 2,000,000
fibers), we can use faster and more direct algorithms by
exploiting the high-performance computing capabilities of
specialized parallel hardware.

In this work, we describe a new fast algorithm for auto-
matic WM segmentation using the method proposed in [4].
In previous work [7], we parallelized the original classifi-
cation algorithm using the CUDA language and run it on a
GPU. By exploiting the memory hierarchy and fine-grained
parallelism of the GPU, we achieved high performance at
an affordable cost [6], [11]. Our results made segmentation
and visualization of WM tracts more practical, albeit still too
slow for interactive applications (35 seconds on a GPU for a
subject dataset of 800,000 fibers). The algorithm presented
in this paper uses a preprocessing stage that can quickly
discard more than 80% of the fibers in the subject dataset
before running the original classification algorithm, without
changing the final results. The new algorithm classifies
800,000 fibers using the entire atlas in less than one second,
and in less than 350ms when only one bundle is considered.

II. MATERIAL AND METHODS

A. Diffusion and tractography datasets

For this analysis, we used healthy subjects from a HARDI
database. Acquisitions were obtained using a Siemens Mag-
netom TrioTim 3T MRI scanner, 12-channel head-coil. The
protocol included a high-resolution T1-weighted acquisition
(echo time (ET) 2.98ms, repetition time (RT) 2300ms, 160
sagittal slices, 1.0x1.0x1.1mm) and a DW-EPI sequence
along 41 directions (2.0x2.0x2.0mm, b=1000s/mm2, plus
one b=0 image, ET 87ms, RT 14000ms, 60 axial slices). The
data were processed using the BrainVISA/Connectomist-2.0
tool [3]. They were preliminary corrected for all sources
of artifacts, and outliers were removed. A preprocessing
step normalizes the tractography dataset to the bundle atlas
space (Talairach space) using an affine transformation and
resamples each fiber using 21 equally-spaced points.

B. Multi-subject atlas

We use the multi-subject atlas proposed in [4], obtained
from a HARDI database of 12 subjects, where inter-subject
clusters were manually labeled to identify known WM tracts.

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 2376

Talairach transform

Fiber resampling (21 points)

For each subject fiber & each atlas centroid:

For direct & inverse direction:

- Determine min(dME) (direct & inverse)
- Compute normalization term (NT)
- dNED=min(dME)+NT

For each fiber point:
 - Compute dE

 - Compute dME

For each fiber bundle:
 - Compute min(dNED)
 - Label if below threshold

Whole brain dataset Multisubject
 fiber bundle atlas

Labeled dataset

P
re

-p
ro

ce
ss

in
g

Fig. 1. White matter segmentation algorithm based on a multi-subject
bundle atlas. First, the algorithm computes the Euclidean distance (dE)
between corresponding points of each subject fiber and atlas centroid and
selects the maximum value (dME). It traverses the fibers in both directions
and selects the minimum distance. A normalization term (NT) is added to
each distance to obtain the normalized Euclidean distance (dNED). Finally,
fibers are labeled by comparing dNED to a per-bundle threshold.

The atlas represents the variability of the bundle shape and
position across subjects. We use 26 of the deep WM bun-
dles (LNAO-DWM12): arcuate fasciculus, corpus callosum,
cigulum fascicles, fornix, uncinate, inferior fronto-occipital,
inferior longitudinal and corticospinal tracts, for a total of
9,085 centroids.

C. WM segmentation based on a multi-subject bundle atlas

Guevara et al. [4] proposed an automatic WM segmenta-
tion method based on the multi-subject WM bundle atlas
described in Figure 1. A similarity measure termed nor-
malized Euclidean distance (dNED) between each fiber
of the tractography dataset and each centroid of the multi-
subject atlas is used for classifying fibers into known bundles.
The algorithm first computes the regular Euclidean distance
between each subject fiber and each atlas centroid. Because
the spatial orientation of fibers on the dataset is unknown,
both possible orientations are considered: direct and inverse
direction. The distance is then normalized by adding a extra
term to penalize the length difference between the fiber and
the centroid, and the minimum between the direct and inverse
distances dNED is obtained for each fiber-centroid pair and
compared with a precomputed threshold for each bundle. If
dNED is lower than the threshold, the fiber is classified as
belonging to that bundle.

The algorithm is flexible and robust, and can be adapted
to different anatomical reconstructions. However, it yields

Non-normalized
quadratic

Euclidean dist.
(dMCE)

1 Point

2 Points

4 Points

21 Points

Normalized
Euclidean distance

(dNE)

Atlas
centroid

Subject
fiber

dMCE

dMCE

dMCE dMCE

dMCE

dMCE
dMCE

dMCE

dME

dMCE

dNE < Threshold?

d1 d2

d2 > d1 => TN

Assign label

Discards
24% of
dataset

Discards
56% of
dataset

Discards
3% of

dataset

Original algorithm on 17% of dataset

Discards 83% of dataset

Fig. 2. Interactive WM segmentation algorithm based on a simplified
distance tree. Most fibers that do not belong to any bundle are quickly
discarded by a preclassification stage using a subset of points and a
simplified distance metric. Preclassified fibers are then processed using the
original algorithm.

excessively long processing times for large tractography
datasets. Indeed, the original implementation written in C++
(for data processing) and Python (for file handling), takes
more than 2.5 hours to segment a subject dataset of 800,000
fibers. As a first step towards reducing the execution time,
profiled the algorithm and rewrote it from scratch in C,
applying advanced compiler optimizations such as loop un-
rolling and scheduling, software pipelining, and reordering
of floating-point operations. The resulting code classifies
the same 800,000-fiber dataset in approximately 11 minutes.
We use this optimized C implementation as a reference to
evaluate our new interactive algorithm.

D. New interactive WM segmentation algorithm

Figure 2 shows the new interactive algorithm, which is
divided into two steps: preclassification and classification.
The original method works using 21 3D points per sub-
ject fiber and atlas centroid, and spends most of its time
computing the normalized Euclidean distance between each
fiber-bundle pair. The preclassification stage quickly discards
fibers that do not belong to a bundle by using a simplified
non-normalized quadratic Euclidean distance dMCE that
uses only a subset of the 21 points that represent each
fiber and omits the normalization term. Each step of the
preprocessing stage compares this distance to the square of
each bundle threshold TH2 and selects only fibers for which
dMCE < TH2. It can be shown that dNED2 > dMCE,
therefore the simplified metric will not discard a fiber that
the original metric would classify as belonging to a bundle.

Our algorithm repeats the preclassification step on the
fibers selected by the previous step, doubling the number
of points per fiber in each run, until the number of discarded
fibers is negligible. We empirically chose the number of
points used in each preclassification step by assessing the
execution time with several subset combinations. The best

2377

Constant Memory

Registers

- Atlas dataset

- Subject dataset

- Final results

- Thresholds of each bundle

- Number of fibers per bundle

Global Memory

- Temporary results

- Points of one subject fiber

Per

kernel

Per

thread

Global memory

Constant memory

Fig. 3. Distribution of data in GPU memory. Our implementation uses
registers to store temporary results and a fiber per thread. Global memory
is used to store datasets and results, and constant memory is used to store
thresholds and constant values.

results were achieved when using the center point in the first
step to quickly discard fibers that are located far from the
centroid. The second and third steps differentiate fiber shape
by using the two extremes and 4 intermediate points, respec-
tively. The final classification stage segments the remaining
fibers using the original distance metric and algorithm.

In our experiments, the preclassification stage discards
83% of the fibers in the dataset. Thus, the original algorithm
runs on only 17% of the data, and assigns a label to 14% of
the fibers on average. The RAM available to the CPU can
only accommodate 200,000 fibers simultaneously, therefore
larger datasets must be processed in blocks.

E. Parallel implementation on a GPU

In order to further reduce the execution time, we wrote a
parallelized version of the new algorithm using the CUDA
language and run it on an NVIDIA GPU. A GPU is a
single-instruction multiple-data (SIMD) processor composed
of hundreds of cores, which are much simpler than traditional
CPU cores. CUDA programs are composed of kernels, which
are functions that execute multiple identical threads. All
threads in a CUDA kernel run in parallel on multiple cores,
by executing the same instruction on multiple data.

Our application consists of a main kernel, which concen-
trates most of the computationally-intensive code. The kernel
spawns as many threads as there are fibers in the subject
dataset. The program starts by allocating global memory on
the video card that hosts the GPU, leaving some extra space
available for final results. Then, the CPU transfers the entire
atlas and subject datasets to the global memory and invokes
the kernel on the GPU.

The NVIDIA GPU architecture features three levels of
memory hierarchy: registers and local memory that can be
privately accessed by each thread being executed on the
GPU; shared memory, which is accessed by all threads
belonging to the same thread block; and constant memory,
texture memory and global memory, which are available for
all threads on the GPU. Our implementation carefully places
the data within the hierarchy depending on how the algorithm
uses it. Figure 3 shows the data placement, which uses local
registers, constant memory, and global memory.

Global memory is flexible and large (6GB in our video
card), but it has a high latency and its bandwidth is limited.
We use it as an intermediate stage to transfer the atlas, fiber
dataset, and computation results between the CPU and the
GPU. Because the atlas contains only 9,085 centroids, the
entire set fits in the global memory.

Registers offer local thread storage with high aggregated
bandwidth and low latency. Because we assign one thread to
each fiber, we use registers to store each fiber point, as well
as temporary results such as intermediate sums, classification
labels per stage, counters, Euclidean distance between points
within a fiber, and the normalization term. Data exists in the
memory for the duration of the thread, which is the lifetime
of the kernel.

Constant memory is globally accessible, but it is smaller
than global memory (only 64KB) and cannot be modified. It
has very low latency and reduces the bandwidth requirements
when multiple threads need to access the same memory loca-
tion simultaneously. We use this memory to store parameters
such as the threshold values and the number of centroids for
each bundle in the atlas, which are constants and are used
by many threads at the same time.

The threads perform the preclassification and classification
stages for each subject fiber. On each preclassification step,
each thread computes dMCE between one fiber and all
the centroids that belong to each atlas bundle. If a fiber is
discarded with respect to a centroid, the thread immediately
starts evaluating another centroid. If a fiber is preclassified,
the evaluation continues in the subsequent steps. If a fiber
passes all preclassification steps of a centroid, the thread
runs the original algorithm to compute dNED and determine
whether it belongs to the respective bundle. Finally, the clas-
sification results are transferred back to the CPU memory.

III. RESULTS

We tested our software on an Intel Core i7-3820 CPU
(3.6GHz, 8GB) running Ubuntu 12.04 and equipped with an
NVIDIA Quadro 6000 GPU with 6GB of GDDR5 RAM and
448 CUDA cores. The parallel version was written using the
CUDA Toolkit 4.0. Our results were validated using a real
subject tractography dataset. All versions of the algorithm
produce the same results as the reference C implementation.

The graph in Figure 4 compares the execution time of the
original algorithm in Python/C++, the optimized C version,
the new algorithm in C, and the parallel version in CUDA,
for dataset sizes ranging from 9,500 to 1,600,000 fibers.

For medium and large datasets of more than 100,000
fibers, our new sequential algorithm runs 21 times faster
than the optimized C version of the original algorithm,
using the same hardware. In turn, the parallel algorithm runs
30 times faster than our sequential version and 638 times
faster than the original C, thus drastically improving the
execution time. The original algorithm can segment a subject
dataset of 800,000 fibers in 2.5 hours with the Python/C++
implementation, and in 11 minutes with the optimized C
version. Our new algorithm runs in 30s using only the CPU,
and in just 970ms using the GPU. These drastically reduced

2378

0,05

0,50

5,00

50,00

500,00

5.000,00

9.000 90.000 900.000

Ti
m

e
 (

s)

Number of fibers

Original alg. C alg. Fast alg. Parallelized fast alg.

Fig. 4. Execution time of the algorithms for different datasets.

6,26
13,23

26,59

54,36

0,21 0,43 0,87 1,71
0,04 0,07 0,1 0,17

0

10

20

30

40

50

60

100k 200k 400k 800k

Ti
m

e
 (

s)

Subject Fibers

Inferior fronto-occipital fas.

C Optimized Sequential Parallel

3,69

7,73

15,62

31,52

0,13 0,24 0,5 0,98
0,05 0,07 0,08 0,14

0

5

10

15

20

25

30

35

100k 200k 400k 800k

Ti
m

e
 (

s)

Subject Fibers

Arcuate fasciculus

C Optimized Sequential Parallel

Fig. 5. Execution time of sequential and parallel fast algorithm for
individual bundles.

execution times enable true interactive use of segmentation
and visualization for tractography datasets of this size.

In order to explore typical use of segmentation in inter-
active visualization tools, we evaluated the time to run the
algorithm on the entire dataset using a single atlas bundle.
In this case, the algorithm only decides whether each fiber
belongs to the selected bundle. Figure 5 shows the results
for 2 representative bundles with the two implementations
of our algorithm, and the original optimized C version.
Both implementations of the new algorithm greatly improve
the execution time. In fact, even on a CPU our algorithm
segments an 800,000-fiber dataset in under 1.7s, while the
original C uses 54s. The execution time on the GPU is below
170ms. Because of the time used to exchange data between
CPU and GPU, the speedup achieved by the parallel version
is smaller than in the segmentation with the entire atlas.

IV. CONCLUSIONS

We have developed a fast automatic segmentation algo-
rithm for classification of white matter fibers. Even a se-
quential version of our algorithm running on a CPU reduces
the original segmentation time by a factor of 21 compared to
a highly-optimized implementation of the original method.
A parallel implementation running on a GPU achieves an
overall reduction in the execution time of a factor of 630.
Thus, segmentation of large datasets that previously would
take 11 minutes, can now be performed in less than one
second. Our sequential and parallel implementations can
also perform segmentation on a per-bundle basis in less
than 1.7s and 170ms, respectively, for the same number of
fibers. These improvements in execution time enable truly
interactive visualization, analysis and segmentation of large
datasets.

V. ACKNOWLEDGMENTS

This work was partially funded by FONDECYT grants
112101 and 11121644, and PIA-CONICYT PFB0824.
Thanks to Marion Leboyer for providing the testing HARDI
database.

REFERENCES

[1] M. Catani, R. J. Howard, S. Pajevic, and D. K. Jones. Virtual in vivo
interactive dissection of white matter fasciculi in the human brain.
Neuroimage, 17(1):77–94, Sep 2002.

[2] L. Dodero, S. Vascon, L. Giancardo, A. Gozzi, D. Sona, and
V. Murino. Automatic white matter fiber clustering using dominant
sets. In Pattern Recognition in Neuroimaging (PRNI), 2013 Interna-
tional Workshop on, pages 216–219, June 2013.

[3] D. Duclap, A. Lebois, B. Schmitt, O. Riff, P. Guevara, L. Marrakchi-
Kacem, V. Brion, F. Poupon, J.-F-Mangin, and C. Poupon.
Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA.
In ESMRMB 2012, 2012.

[4] P. Guevara, D. Duclap, C. Poupon, L. Marrakchi-Kacem, P. Fillard,
D. Lebihan, M. Leboyer, J. Houenou, and J-F. Mangin. Automatic
fiber bundle segmentation in massive tractography datasets using a
multi-subject bundle atlas. Neuroimage, 61(4):1083–1099, Jul 2012.

[5] P. Guevara, C. Poupon, D. Riviére, Y. Cointepas, M. Descoteaux,
B. Thirion, and J.-F. Mangin. Robust clustering of massive tractogra-
phy datasets. NeuroImage, 54(3):1975–1993, Feb 2011.

[6] D. B. Kirk and W.-M. W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. M. Kaufmann, 2010.

[7] N. Labra, M. Figueroa, P. Guevara, D. Duclap, J. Houenou, F. Poupon,
and J-F. Mangin. Gpu-based acceleration of an automatic white matter
segmentation algorithm using cuda. In IEEE Eng Med Biol Soc, EMBS
conference, pages 89–92, 2013.

[8] D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata,
N. Molko, and H. Chabriat. Diffusion tensor imaging: concepts and
applications. J Magn Reson Imaging, 13(4):534–546, Apr 2001.

[9] H. Li, Z. Xue, L. Guo, T. Liu, J. Hunter, and S.T. Wong. A hybrid
approach to automatic clustering of white matter fibers. Neuroimage,
49(2):1249–1258, Jan 2010.

[10] L.J. O’Donnell and C.-F. Westin. Automatic tractography segmenta-
tion using a high-dimensional white matter atlas. IEEE Transactions
on Medical Imaging, 26(11):1562–1575, Nov. 2007.

[11] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley, 2012.

[12] Samuel Sarrazin, Cyril Poupon, Julia Linke, and et al. A multicenter
tractography study of deep white matter tracts in bipolar i disorder:
Psychotic features and interhemispheric disconnectivity. JAMA Psy-
chiatry, Feb 2014.

[13] D. Wassermann, L. Bloy, E. Kanterakis, R. Verma, and R. Deriche.
Unsupervised white matter fiber clustering and tract probability map
generation: Applications of a gaussian process framework for white
matter fibers. Neuroimage, 51:228–241, Jan 2010.

2379

