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Abstract—DTI (Diffusion Tensor Imaging) is a well-known 

MRI (Magnetic Resonance Imaging) technique which provides 

useful structural information about human brain. However, the 

quantitative measurement to physiological variation of subtypes 

of ischemic stroke is not available. An automatically quantitative 

method for DTI analysis will enhance the DTI application in 

clinics. In this study, we proposed a DTI Fingerprinting 

technology to quantitatively analyze white matter tissue, which 

was applied in stroke classification. The TBSS (Tract Based 

Spatial Statistics) method was employed to generate mask 

automatically. To evaluate the clustering performance of the 

automatic method, lesion ROI (Region of Interest) is manually 

drawn on the DWI images as a reference. The results from the 

DTI Fingerprinting were compared with those obtained from 

the reference ROIs. It indicates that the DTI Fingerprinting 

could identify different states of ischemic stroke and has 

promising potential to provide a more comprehensive measure of 

the DTI data. Further development should be carried out to 

improve DTI Fingerprinting technology in clinics.   

I. INTRODUCTION 

DTI (Diffusion Tensor Imaging) is a remarkably valuable 
clinical MRI technology to measure the restricted diffusion of 
water in white matter tissue, in order to form fiber tract 
imaging [1]. One popular application of DTI in clinics is 
tract-specific localization of white matter lesion such as brain 
tumor [2-4]. Researchers also focus on the assessment of 
white matter in development, pathology and degeneration 
with DTI technology. Current quantitative analysis of DTI 
data is sensitive to the lesion location but not the physiological 
changes in nature. However, DTI images not only provide 
structural information but also contain physiological 
meanings [5]. Further development on the quantitative 
analysis of physiological characterization on DTI data will 
benefit both neuroscience research and clinical practice. 

For DTI neural analysis, the measurements of diffusive 
anisotropy, such as FA (Fractional Anisotropy) and ADC 
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(Apparent Diffusion Coefficient) have remained for over 20 
years [6], being mainly restricted to low imaging resolution in 
a cross section and inaccurate qualitative spatial localization 
of fiber tracts. Moreover, the identification of hyperintense or 
hypointense areas on DTI images is not enough for 
explanation of disease evolving mechanism. On the other 
hand, tractography as another primary DTI application can 
only calculate the magnitude and orientation of the primary 
axis or vector rather than the full set of tensor properties of 
interest, which fails to provide quantitative indication of the 
severity of brain disease states. In 2013, Ma proposed MRF 
(Magnetic Resonance Fingerprinting) technology [7] 
permitting quantitatively detecting and analysis of complex 
signal changes that can represent physical alterations of a 
neural material or early indicators of disease. Inspired by this 
idea, non-invasive quantification of brain tissue on DTI could 
be promising to overcome the DTI existing limitations.  

In current study, a new technology named DTI 
Fingerprinting, is proposed to identify the comprehensive 
physical and physiological features of stroke lesion. Instead of 
depending on pure recognition of diffusive anisotropy 
intensity contrast, successive acquisition of DTI data can be 
characterized by a certain pattern of the signal, which is a 
fingerprint of the DTI dataset. The fingerprint will be the 
unique identity for the specific brain tissue with different 
physiologies. Region of interest (ROI) in diffusion images 
from patients and normal controls were drawn manually and 
defined automatically (e.g. tract based spatial statistics, 
TBSS). The unique signal patterns corresponding to different 
neural tissues is the key assumption underlying the DTI 
Fingerprinting technology. The preliminary result in the 
present study demonstrates the promising potential of DTI 
Fingerprinting technology in quantification of neural 
physiology, which is beyond the spatial localization of most 
existing quantitative analysis methods of DTI data. It is 
evident that by the clustering process, such technology can 
assess neural physiological changes, which will assist clinical 
diagnosis with a comprehensive measure.  

II. METHODOLOGY 

A. Data acquisition and Preprocessing 

 Nineteen subjects (13 men and 6 women, mean age 49±
19 years) participated in the therapeutic trails were included in 
the current study. In these 19 subjects, there were eight healthy 

people (4 male and 4 female, mean age 31±4 years), eight 

with fresh stroke lesion (6 male and 2 female, mean age 64±
15 years), and three with stroke sequela (3 male, mean age 58

± 8 years). The diagnostic reports were issued by two 

neurologists in Peking University Shenzhen Hospital. All the  
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subjects underwent MR imaging with 1.5T Siemens Sigma 
System (Siemens Medical Systems, Peking University 
Shenzhen Hospital). The typical MRI protocol consisted of 
fast T2-weighted sequence (TE=89ms, TR=4000ms, Flip 

Angle=150° , acquisition matrix=768×624, FOV=230×
187 mm

2
)  and diffusion tensor imaging sequence (TE=88ms, 

TR=2700ms, Flip Angle=90°, acquisition matrix=256×256, 

FOV=250×250 mm
2
 , b0=1000 s/mm

2
). Diffusion weighting 

was consist of 20 non-collinear directions, and a non-diffusion 
tensor image whose b0=0 s/mm

2
. Nineteen axial sections of 

scanning in 5mm thickness without gap, covering the whole 
brain were obtained.  

The DICOM data of 21 DWI images in each subject was 
imported into the SPM8 software (Welcome Trust Centre, 
UCL) for preprocessing. Images were realigned automatically 
and then normalized into the standard MNI (Montreal 
Neurological Institute) space. Meanwhile, the Gaussian filter 
of 3-fold voxel size was employed in order to improve SNR.  

B. Manual ROI and TBSS Mask 

Acquisition of diffusion weighting signals from the infarct 
brain volume required accurate location. Therefore, ROIs of 
stroke lesion on DWI images were drawn independently by 
another neurologist blinded to clinical symptoms as shown in 
Figure 1, which was set as a reference for other automatic ROI 
definition. The signals from the normal control group were 
also selected manually in the high occurrence areas of infarct. 
The clear delineation of the landmarks on T2-weighed images 
facilitated correction by comparing the initial and follow-up 

images and justified the use of T2-weighed instead of DWI 
images for the final infarct location. For all manual ROIs, a 
mirror ROI placed in the contralateral regions was generated 
by software. Thus the ratio value between infarct areas and the 
mirror normal areas was obtained for all the subjects. 

As an objective alternative to ROI delineation, which is 
time-consuming and labour-intensive, an automatic ROI 
definition method based on TBSS was proposed [8-10]. After 
obtaining all the participants’ FA (Fractional Anisotropy) 
maps using DTIStudio software [11], TBSS analysis was 
performed using FMRIB software library (FSL 4.1.9; 
www.fmrib.ox.ac.uk/fsl) by the following procedures:  

1) ICBM_DTI_81_FA which was developed by Mori et al. 
(2008) was used as the target image to transform FA images 
from different subjects to a standard space.  

2) The mean of all aligned FA images was created and then 
fed into the FA skeletonisation program to create a 
skeletonized mean FA image. The FA value threshold was set 
at 0.2 to suppress areas of low mean FA and/or high 
intersubject variability.  

3) Each participant’s (aligned) FA image was projected 
onto the skeleton.  

4) We carried out voxel-wise statistics between patients 
with stroke and healthy controls on the FA data in skeleton 
space.  

The threshold was set at p<0.005 (uncorrected), thus we 
achieved the statistical result, as in Figure 2. According to the 
result image which represented the significantly reduction of 
FA value, a whole brain mask could be created by setting the 
intensity of active voxels intensity to 1, other areas to 0. 

C. Measures for DTI Fingerprinting 

Since quantitative measurement of DTI fingerprints relied 
on accurate evaluation standard, a method of unsupervised 
learning was proposed to process image signals based on 
abnormal brain areas. To distinguish the severity of stroke, 
clustering recognition was applied on the nineteen subjects. 
By selecting the ratio values from manual ROIs and TBSS 
mask as clustering features, the feature dimensionality was 
determined according to the PCA (Principal Component 
Analysis) method. PCA used an orthogonal transformation to 
convert a set of ratio values into linearly uncorrelated 
principal components. In current study, 3 dimensionalities 
were reduced from 21 (20 gradient directions and 1 B0 image) 
by over 95 percent weighting of the total variance. The 
hierarchical merging algorithm was applied to get the final 
clustering results by use of an appropriate metric and a linkage 
criterion. We set Euclidean Distance and Cosine Distance as 
the measure of distance between pairs of fingerprints and 
single-linkage criterion which specified the dissimilarity of 
sets. The Euclidean distance was calculated as follows: 

 ( )( )
E

D   
s t s t

x x x x
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where sx and tx are feature vectors of two subjects. The 

Cosine distance was calculated as follows: 

     

     

Figure 1. Manual ROI drawing of stroke lesion on DWI images. The 

stroke lesion was observed in the brain DWI image. A hand-drawing red 

region was marked on stroke lesion to obtain ROI fingerprints. 

Figure 2. TBSS mask calculation on FA map by FSL software. Blue 

regions showed significantly decreased FA (p<0.005) in patients with 

stroke relative to normal controls. White regions showed the 

corresponding lesion mask. Green regions represented the mean FA 

skeleton. 
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The single-linkage criterion is defined as follows: 

where sx and tx are feature vectors from two clusters A  and 

B . D is the metric of distance.  

III. RESULTS 

The results obtained from the 19 subjects were shown in 
Table 1. For each subject, the classification or final clustering 
pattern labels with different methods were presented in each 
column. The classification of clinical diagnosis was set as a 
reference in the first column. For the clinical reference, 1 
represents the normal control; 2 represents the group with 
acute stroke lesion and 3 represents the group with stroke 
sequela. For manual ROI method, different numbers are 
different clustering labels. All the subjects in the normal 
control were clustered into one group. In addition, no subjects 
diagnosed with stroke were clustered into normal group. On 
the other hand, one normal participant (Subject 4) was 
clustered falsely to the stroke group for TBSS mask. 
Moreover, with Cosine Distance, 3 instances of stroke patients 
were grouped falsely (79% accuracy), and the accuracy with 

Euclidean Distance dropped to 63%. 

As for evaluation of the clustering results, F score was a 
common measurement to estimate how close the clustering 
was to the predetermined benchmark classes. It can be 
interpreted as a weighted average of the precision and recall, 
where F score reaches its best value at 1 and worst score at 0. 
Figure 3 demonstrated F score calculated under different 
situations. Comparing with the manual ROI method, the F 
scores with the TBSS method were over 20 percent lower. 
Besides, the F scores with Cosine Distance were 3 and 7 
percent higher than those with Euclidean Distance for both 
manual ROI and TBSS mask, respectively. 

IV. DISCUSSION 

Current study proposed a DTI Fingerprinting technology 
to detect DWI pattern features, which is the first trial to search 
the inherent relation between DTI data and the brain features. 
Since DTI method allows an exploration of fiber tract 
integrity and orientation in the human brain [12-15], 
researchers generally focused on spatial detection of abnormal 
brain tissue using DTI [16-19]. In this study, the DTI 
Fingerprinting is proposed to measure diffusion weighting 
signal features quantitatively more than hyperintense area 
observation around brain lesion.  

The result in the proposed study shows that such 
technology is promising in detecting brain diseases like stroke. 
By comparison with the clinical reference in Table 1, a perfect 
manual ROI/reference match for Cosine Distance is observed 
in all subjects (F score=1), validating DTI fingerprints for 
stroke lesion. In other words, the clustering of DTI 
fingerprints will coincide with the clinical reference when the 
acquisition of ROI is accurate. Most of all, the present study 
provides a possible identity of the brain abnormalities since 
the clustering result for manual ROI could identify the stroke 
sequelae out of the general stroke patients.  

The advantage of the method using TBSS mask is 
automatically calculating the fingerprint areas quantitatively 
by statistical analysis [20, 21]. Although the F scores for 
TBSS mask are lower than those in manual ROI situation, the 
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 C.R 

Manual ROI TBSS mask 

E.D C.D E.D C.D 

Subject 1 1 1 1 1 1 

Subject 2 1 1 1 1 1 

Subject 3 1 1 1 1 1 

Subject 4 1 1 1 2 2 

Subject 5 1 1 1 1 1 

Subject 6 1 1 1 1 1 

Subject 7 1 1 1 1 1 

Subject 8 1 1 1 1 1 

Subject 9 2 2 2 3 2 

Subject10 2 2 2 4 2 

Subject11 2 2 2 5 3 

Subject12 3 3 3 4 4 

Subject13 2 4 2 4 2 

Subject14 2 2 2 6 3 

Subject15 2 2 2 4 2 

Subject16 3 3 3 6 2 

Subject17 2 2 2 1 1 

Subject18 2 2 2 4 2 

Subject19 3 3 3 7 4 

F value  0.97 1 0.71 0.78 

C.R: Clinical Reference; E.D: Euclidean Distance; C.D: Cosine Distance. 

TABLE I.    CLUSTERING RESULT AND EVALUATION 

    

 

Figure 3. F score with two distances under Manual ROI and TBSS mask. 

TE: Euclidean distance using TBSS mask; ME: Euclidean Distance using 

manual ROI; TC: Cosine distance using TBSS mask; MC: Cosine Distance 

using manual ROI; CI: 95% confidence interval. 
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clustering result is close to diagnosed classification, especially 
for Cosine Distance. Moreover, the clustering result with 
Cosine Distance is higher than that with Euclidean Distance, 
which coincides with the fact that Cosine Distance reflects 
more signal pattern information, while the Euclidean Distance 
contains more signal intensity information. Thus DTI 
Fingerprinting is able to provide a new angel for detection of 
brain abnormalities.  

Although it is optimistic that DTI Fingerprinting with 
manual ROI acquisition performs well, the accuracy of 
clustering based on TBSS mask drops more than 20 percent 
than that of clinical reference. This result may be on account 
of FA misuse in TBSS. FA maps representing the orientation 
and anisotropy of the fiber tract in white matter, may not 
reflect the signal evolving features of brain lesions. Therefore, 
the TBSS mask based on FA probably fails to locate total area 
of the disturbed tissue. Future work should concentrate on 
developing mask generation in an automatic statistic method. 
Another factor that possibly limits the accuracy of clustering 
is the unpaired ages between the normal control and the 
patient group. The result will be more objective when 
avoiding interference from subjects. In conclusion, this 
preliminary study indicates the potential of DTI 
Fingerprinting to classify brain abnormalities, and provides a 
more comprehensive measure of DTI data. 
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