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Abstract— Magnetic resonance imaging (MRI) is considered
a key modality for the future as it offers several advantages,
including the use of non-ionizing radiation and having no
known side effects on the human body, and has recently begun
to serve as a key component of multi-modal neuroimaging.
However, two major intrinsic problems exist: slow acquisition
and intrusive acoustic noise. Parallel MRI (pMRI) techniques
accelerate acquisition by reducing the duration and coverage
of conventional gradient encoding. The under-sampled k-space
data is detected with several receiver coils surrounding the
object, using distinct spatial encoding information for each
coil element to reconstruct the image. However, this scanning
remains slow compared to typical clinical imaging (e.g. X-
ray CT). Compressed Sensing (CS), a sampling theory based
on random sub-sampling, has potential to further reduce the
sampling used in pMRI, accelerating acquisition further. In this
work, we propose a new CS SENSE pMRI reconstruction model
promoting joint sparsity across channels and enhancing mutual
incoherence to improve reconstruction accuracy from limited
k-space data. For fast image reconstruction and fair compar-
isons, all reconstructions are computed with split-Bregman and
variable splitting techniques. Numerical results show that, with
the introduced methods, reconstruction performance can be
crucially improved with limited amount of k-space data.

I. INTRODUCTION

Compressed Sensing (CS) is an attractive theory for recon-
struction of images from small numbers of measurements.
Assuming a partial sensing matrix PΩΦ ∈ CN×N where PΩ

is a diagonal projection matrix with mth entry 1 if m ∈ Ω
and 0 otherwise, |Ω| = M � N is chosen uniformly at
random, Φ ∈ CN×N where {φn}Nn=1 is an orthonormal basis
of CN , a sparsifying transform Ψ ∈ CN×N where {ψn}Nn=1

is an orthonormal basis of CN , and y = PΩy0 ∈ CN

with y0 = Φx, the s-sparse solution in basis Ψ (‖Ψx‖0 ,
|supp(Ψx)| ≤ s � N , where x ∈ CN ) of y = PΩΦx can
be perfectly recovered with high probability by solving the
following convex optimization problem:

argmin
x
‖Ψx‖1, s.t. y = PΩΦx

with sufficient number of measurements given by

M ≥ κµ2(U)Ns log(N) (1)
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(a) (b)
Fig. 1. Sampling schemes (sampling ratio ≈ 10 %): (a) radial lines and
(b) multi-level random sampling.

for some constant κ, where mutual coherence (MC) µ(U) =
maxm,n |um,n| ∈ [1/

√
N, 1] and U = ΦΨ−1 [1], [2]. If, for

example Φ = DFT and Ψ = Identity so that µ(U) = 1/
√
N ,

then (1) states that compressed sensing requires an optimally
small number of measurements, up to a log factor. However,
if Ψ = discrete Daubechies transform (DDT), then the MC is
high, µ(U) = 1, and (1) predicts a barrier in the performance
of CS. To overcome this, one must sample according to a
nonuniform density, as recently explained in [3].

We consider the discrete pMRI model, in combination with
SENSitivity Encoding (SENSE, [4]):

y = FΩSx + n,

where y = [yH
1 · · ·yH

C ]H ∈ CNC is the noisy k-space
observation in rectangular field of view (FOV), in which
the k-space observation of the cth coil is yc = PΩy0

c ∈
CN for c = 1, . . . , C, C the number of coils; FΩ =
IC ⊗ PΩΦ ∈ CNC×NC , where PΩΦ ∈ CN×N is a
partial DFT matrix with a corresponding full DFT matrix
Φ ∈ CN×N ; S = [SH

1 · · ·SH
C ]H ∈ CNC×N , in which Sc =

diag(sc) ∈ CN×N , where sc is the sensitivity profile for cth

coil; x ∈ CN is the unknown image to be reconstructed; and
noise n ∈ CNC . Here diag(·) denotes the conversion of a
vector into a diagonal matrix.

In this work, we propose a new CS SENSE pMRI re-
construction model promoting joint sparsity (JS, [5], [6],
[7]) across the channels to improve reconstruction accuracy
from limited amounts of k-space data. To overcome the
aforementioned MC barrier, a multi-level sampling scheme
([3]) is applied. Such a scheme may not be realistic in
practical 2D imaging, so we also provide results showing
improved accuracy with radial line sampling. For fast image
reconstruction and fair comparisons, all the models are
solved with split-Bregman (SB, [8]) and variable splitting
(VS, [9]) techniques. In this framework, the new model has
an additional advantage of an efficient reconstruction using a
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combination of multiple sparsifying systems, e.g. DDT and
total vatiation (TV).

II. METHODS
By separating the original problem into several sub-

problems which can be solved more simply, the split-
Bregman (SB) technique is known to exhibit rapid and
efficient convergence for l1-norm minimization. The vari-
able splitting (VS) technique has been applied on different
occasions to solve problems more efficiently. An application
of these techniques leads here to the fair comparison of all
models.

A. Efficient conventional CS SENSE pMRI Reconstruction
by SB using VS

The following is a conventional CS SENSE pMRI recon-
struction model [10]:

argmin
x
‖Ψx‖1, s.t. ‖y − FΩSx‖22 < η. (2)

By simplified Bregman iteration [11], (2) can be reduced to
a sequence of unconstrained problems:

x(k+1) = argmin
x(k)

‖Ψx(k)‖1 + (α/2)‖y(k) − FΩSx(k)‖22;

(3)
y(k+1) = y(k) + y − FΩSx(k+1). (4)

After transforming (3) to a constrained problem through
VS (i.e. d

(k)
Ψ = Ψx(k) and d

(k)
S = Sx(k)), (3) becomes

equivalent to the following two-phase algorithm, according
to SB:

(x(k+1),d
(k+1)
S ,d

(k+1)
Ψ )

= argmin
x(k),d

(k)
S ,d

(k)
Ψ

‖d(k)
Ψ ‖1 + (α/2)‖y(k) − FΩd

(k)
S ‖

2
2+

(ν/2)‖d(k)
S − Sx(k) − b

(k)
S ‖

2
2+

(β/2)‖d(k)
Ψ −Ψx(k) − b

(k)
Ψ ‖

2
2;

(5)

b
(k+1)
S = b

(k)
S + Sx(k+1) − d

(k+1)
S

b
(k+1)
Ψ = b

(k)
Ψ + Ψx(k+1) − d

(k+1)
Ψ .

Because the l1 and l2 components are decomposed, we can
solve (5) efficiently by minimizing it separately with respect
to x(k), d

(k)
S , and d

(k)
Ψ . The x(k+1) can be easily obtained:

x(k+1) =
(
βI + νSHS

)−1(
βΨH(d

(k)
Ψ − b

(k)
Ψ ) + νSH(d

(k)
S − b

(k)
S )
)
.

The d
(k)
Ψ can be calculated quickly by an element-wise

soft-shrinkage operator defined by softshrink(x, α) =
(x/|x|)max(|x| − α, 0):

d
(k+1)
Ψ,n = softshrink([Ψx(k+1)]n + b

(k)
Ψ,n, 1/β)

for n = 1, . . . , N . Hence, the total reconstruction time
depends predominantly on the cost to calculate d

(k+1)
S . Using

only C pairs of fft2 and ifft2, d
(k+1)
S can be obtained:

d
(k+1)
S = ΦH

CΛ−1ΦCz,

where diagonal matrix Λ = αPT
ΩPΩ + νI, z = αFH

Ωy(k) +

ν(Sx(k+1) + b
(k)
S ), ΦC = IC ⊗Φ, and PΩ = IC ⊗PΩ.

B. Efficient CS SENSE pMRI Reconstruction Promoting JS
by SB using VS

The conventional CS SENSE pMRI model (2) does not
fully exploit the relationship between the images in each coil;
in particular, their shared sparsity patterns. The proposed CS
SENSE pMRI reconstruction model using joint sparsity (JS,
‖ · ‖2,1) is given by:

argmin
x
‖ΨCSx‖2,1, s.t. ‖y − FΩSx‖22 < η. (6)

where ΨC = IC ⊗Ψ and ‖ψ‖2,1 =
∑N

n=1

√∑C
c=1 |ψnc|2.

‖ · ‖2,1 is a convex functional that exploits cross-channel de-
pendencies between wavelet coefficients in the same spatial
positions [5], [6], [7]. By simplified Bregman iteration, (6)
can be reduced to a sequence of unconstrained problems:

x(k+1) = argmin
x(k)

‖ΨCSx(k)‖2,1+(α/2)‖y(k)−FΩSx(k)‖22;

(7)
y(k+1) = y(k) + y − FΩSx(k+1). (8)

After transforming (7) to a constrained problem through VS
(i.e. d

(k)
S = Sx(k) and d

(k)
Ψ = ΨCd

(k)
S ), (7) is equivalent to

the following two phase algorithm, based on the SB method:

(x(k+1),d
(k+1)
S ,d

(k+1)
Ψ )

= argmin
x(k),d

(k)
S ,d

(k)
Ψ

‖d(k)
Ψ ‖2,1 + (α/2)‖y(k) − FΩd

(k)
S ‖

2
2+

(ν/2)‖d(k)
S − Sx(k) − b

(k)
S ‖

2
2

(β/2)‖d(k)
Ψ −ΨCd

(k)
S − b

(k)
Ψ ‖

2
2;

(9)
b

(k+1)
S = b

(k)
S + Sx(k+1) − d

(k+1)
S

b
(k+1)
Ψ = b

(k)
Ψ + ΨCd

(k+1)
S − d

(k+1)
Ψ .

Because l1 and l2 components are decomposed, we can solve
(9) efficiently by minimizing it separately with respect to
x(k), d

(k)
S , and d

(k)
Ψ . The x(k+1) can be calculated easily:

x(k+1) = (SHS)−1SH(dS
(k) − bS

(k)).

The d
(k)
Ψ can be obtained quickly by an element-wise joint

soft-shrinkage operator defined by Jsoftshrink(x, γ) =
(x/‖x‖2)max(‖x‖2 − γ, 0):

d
(k+1)
Ψ,n = Jsoftshrink([ΨCd

(k+1)
S ]n + b

(k)
Ψ,n, 1/β),

for n = 1, . . . , N , where [ΨCd
(k+1)
S ]n =

[[ΨCd
(k+1)
S ]n1; · · · ; [ΨCd

(k+1)
S ]nC ]. Therefore, the total

reconstruction time heavily depends on the computational
cost to obtain d

(k+1)
S from (9). The minimization of (9)

with respect to d
(k)
S can be solved analytically as follows:

d
(k+1)
S = ΦH

CΛ−1ΦCz,

where diagonal matrix Λ = αPT
ΩPΩ + (β + ν)I, z =

αFH
Ωy(k) + βΨH

C(d
(k)
Ψ − b

(k)
Ψ ) + ν(Sx(k+1) + b

(k)
S ). As

before, the main computation here is C pairs of fft2 and
ifft2.
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CSW SENSE CSW SENSE using JS CSW+TV SENSE using JS Reference

(a-1)
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(a-2)

(b-2)

Fig. 2. Comparison of 512 × 512 reconstructed images from different CS SENSE pMRI reconstruction and sampling methods (C =
4, sampling percentage ≈ 10 %): (a-1) whole image based on radial lines, (b-1) whole image based on multi-level random sampling, (a-2) zoomed-
in image based on radial lines, and (b-2) zoomed-in image based on multi-level random sampling.

Another benefit of this approach is an efficient incorpora-
tion of current model with TV minimization:

argmin
x

‖ΨCSx‖2,1 + ‖G1,CSx‖2,1+

‖G2,CSx‖2,1, s.t. ‖y − FΩSx‖22 < η,
(10)

where G1,C = IC ⊗G1 with horizontal direction gradient
transform G1 ∈ CN×N , and G2,C = IC ⊗ G2 with
vertical direction gradient transform G2 ∈ CN×N . Noting
that GT

1 G1 + GT
2 G2 has circulant structure under periodic

boundary condition, (10) is solved in a similar way as above.

C. Multi-Level Random Sampling

Nonuniform density random sampling is necessary to
overcome the MC barrier in CS [3]. So-called multi-level
random sampling provides an optimized strategy to this end
[3]. Assuming that normalized field-of-view (FOV) of k-
space is in [−1, 1]2, inside the FOV, there exist n regions
delimited by n − 1 equi-spaced concentric circles and the
full square. Let the circles have radius ri = m if i = 0 and

ri = i(1−m)/(n−1) if i = 1, . . . , n−1, where 0 ≤ m < 1.
The uniform probability densities for each regions is defined:

pi = exp
(
− b · (i/n)a

)
,

where i = 0, . . . , n and a, b > 0. Note that the sampling
ratio decreases as i→ n. In Fig. 1, this scheme is graphically
illustrated with radial line sampling.

III. SIMULATION RESULTS AND DISCUSSIONS

The introduced CS pMRI reconstruction models are named
as CSW SENSE, CSW SENSE with JS, and CSW+TV SENSE
with JS; corresponding, respectively to (2), (6), and (10).
As a test object, we used the analytical phantom introduced
in [12] of size of 512 × 512, since it has many realistic
anatomical aspects and can be defined with high resolution.
The rectangular FOV is 25.6×25.6 cm. The sensitivity maps
have been simulated with the Biot-Savart law [12], based
on C = 4, a coil radius of 7 cm, and a distance from the
coil centers to the center of the rectangular FOV of 17 cm.
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TABLE I
COMPARISON OF RECONSTRUCTION ACCURACY WITH DIFFERENT CS

SENSE PMRI RECONSTRUCTION AND SAMPLING METHODS

A. SERdB of 512× 512 Reconstructed Images
CSW SENSE CSW SENSE with JS CSW+TV SENSE with JS

(a) 16.7577 18.5484 20.3424

(b) 18.1184 20.1148 21.2058

B. RMSE(×10−2) of 512× 512 Reconstructed Images
CSW SENSE CSW SENSE using JS CSW+TV SENSE using JS

(a) 3.4489 2.7705 2.2976

(b) 2.9579 2.3267 2.0836

*Sampling methods (sampling percentage ≈ 10 %): (a) radial
lines and (b) multi-level random sampling

For the radial line sampling method, the k-space data is
sampled along 47 radial lines, uniformly-spaced in angle,
corresponding to ≈ 10.0 % of the full k-space samples. For
multi-level sampling, n = 100, m = 0.01, a = 1, and b =
3.8822 are used, which also leads to ≈ 10.0 % of full k-space
samples. An additive noise is not considered. For the initial
guess, x(0) = sos(ifft2,C(y)) was obtained, where sos(·)
denotes sum-of-squares reconstruction and ifft2,C(·) denotes
ifft2 for each coil. All the parameters (i.e., α, β, γ, ν) are
selected as 1, where γ is an additional parameter to consider
the TV norm in (10). The DDT filter size is 4. The stopping
criterion is defined as tol(k) = ‖FΩSx(k)−y‖22

/
‖y‖22. Error

minimization is evaluated with the following two measure-
ments: RMSElog(k) = log10

(
RMSE(x(k),xtrue)

)
and

SERdB(k) = 20 log10

(
‖xtrue − x(k)‖2

/
‖xtrue‖2

)
, where

SER stands for signal to error ratio.

A. Reconstruction Accuracy

For both radial line and multi-level random sampling
schemes, the proposed CS SENSE pMRI reconstruction
promoting JS across channels shows higher reconstruction
accuracy than the conventional model. Theoretically, the
MC barrier in CS performance can be resolved with the
multi-level sampling scheme. The radial line sampling is
chosen as a practical nonuniform sampling scheme, however,
it degrades the accuracy, because it takes fewer samples at
low frequency than multi-level sampling. If we promote JS
in both of the Wavelet and TV sparsifying domains, we
can see significant SER improvement, especially for radial
sampling lines, i.e. CSW+TV SENSE with JS can reduce the
gap between the theory and practice. These assertions are
supported by Fig. 2 and Table I.

B. Error Minimization Behavior

Fig. 3 shows the converging behavior of the algorithms
for the convex minimization problems (2), (6), and (10).
Theoretically speaking, SB is free from tricky regularization
parameter selection for a constrained optimization problem:
the parameter is important for convergence rate, but exhibits
no effect on the solution by varying observation so called
“adding back the noise” process (e.g., (4) and (8)). Even with
the default setting of unity and without sophisticated control
of the parameters, the algorithms show decent convergence
rates.
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Fig. 3. Comparison of SER maximization behavior with differ-
ent CS SENSE pMRI reconstruction and sampling schemes (C =
4, sampling percentage ≈ 10 %)

IV. CONCLUSIONS

The promotion of JS to CS SENSE pMRI reconstruction
not only improves the reconstruction accuracy, but also leads
to an efficient sparse recovery in Wavelet and TV domains.
The radial line sampling is chosen as practical nonuniform
sampling scheme to overcome the MC barrier, but limits the
theoretical CS performance. This gap can be diminished by
CSW+TV SENSE with JS. The proposed and conventional
models were efficiently solved based on SB and VS.
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