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Abstract— Advances in robotic surgery especially in
minimally-invasive surgery (MIS) has increased the need for
translating computer-vision algorithms in endoscopic imagery
to support surgical decisions. While methods for stereo re-
construction have been extensively investigated for man-made
environments, such an extensive and detailed study on the
pros and cons of stereo reconstruction for endoscopic images.
In this paper, we extensively compare several state-of-the-art
methods on both simulated as well as real endoscopic images
over controlled in-lab and phantom models observed by a
daVinci stereo endoscope. The advantages and disadvantages
of each compared method over the major steps of a stereo-
reconstruction pipeline are discussed and supported by exhaus-
tive experiments and discussions.

I. INTRODUCTION

Recent advances in endoscopic technology promoted a
novel surgical paradigm called minimally invasive surgery
(MIS). In MIS, long thin surgical tools are inserted into the
patient’s body through tiny incisions, and the surgical site
is made visible to the surgeon by means of an endoscopic
camera. Despite the benefits for the patient (such as reduced
trauma and hospitalization time), MIS is challenging for the
surgeon who still experiences a reduced awareness of the
patient’s anatomy due to the limited field of view of the
endoscopic camera.

As such, computer-aided navigation systems have been
developed in the past years that promise to enhance the sur-
geon’s view about high-risk anatomical targets by fusing pre-
operative radiological data onto the live endoscopic video. At
the core of these systems is the capacity for the computer
to accurately perceive in real time the tri-dimensional (3-D)
dynamic structure of the soft-tissue surgical scene.

Achieving both sub-millimeter accuracy and real-time
performance in estimating the 3-D tissue geometry from
the stereo images have been a Holy Grail for a long time.
While stereo reconstruction in man-made environments has
been thoroughly investigated [15], [16], no work exists
in the endoscopic-vision arena that extensively compares
state-of-the-art stereo-reconstruction methods for endoscopic
imagery. Stereo reconstruction in endoscopic images is dra-
matically challenging when compared to man-made envi-
ronments, because of the large lens distortion, the many
texture-less areas, the occlusions introduced by the surgical
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tools, specular highlights, smoke and blood [4]. Some recent
publications target stereo analysis and compare the disparity
between single pairs of images from endoscopic images [5].
While these papers provide a survey over the current meth-
ods, they do not present any quantitative comparison of
stereo reconstruction accuracy, and in particular at each
stage of the reconstruction pipeline. Therefore, a comparison
between available methods for each individual step of a
stereo-reconstruction pipeline is extremely important and
it will greatly help the community to increase awareness
over those stages the most critical in a stereo endoscopic
reconstruction.

In our previous workshop work [17], we provided an
initial study of different stereo-reconstruction methods with
a particular focus on the image-processing stages necessary
to improve image quality. In this work we greatly extend
over that initial study, and adopt a controlled in-lab model
to perform an extensive comparison between a larger number
of state-of-the-art stereo-reconstruction methods from endo-
scopic images. We also specifically focus this study on com-
paring two key aspects of a stereo-reconstruction pipeline:
disparity and stereo-triangulation stages, which have been
shown to critically affect the overall final accuracy. The in-
lab model (with known dimensions) is used for the first time
to conduct precise tests on all the different stages of a stereo
pipeline. Finally, results on endoscopic imagery of a realistic
organ’s phantom model are also presented. Based on our
results, we present in depth discussion on the most suitable
algorithms for each stage of the stereo reconstruction pipeline
in terms of both accuracy and computational time.

The rest of the paper is organized as follows: Sect. II
introduces the stereo reconstruction pipeline with a particular
focus on the compared disparity and stereo-triangulation
methods. Sect. III provides details about the experimental
setup and the results from simulated and real endoscopic
images. Finally, Sect. IV discusses the presented results and
describes future direction of investigations.

II. STEREO RECONSTRUCTION

Stereo reconstruction aims at obtaining a metric 3-D
reconstruction of a scene as it is being observed by two
(left {L} and right {R}) endoscopic cameras. Stereo recon-
struction consists of a sequence of steps, as illustrated in the
flowchart of Fig. 1.

The first step consists of de-interlacing and filtering each
image to improve the search for similarities (or correspon-
dences). The second step uses image undistortion to remove
the image effects caused by the endoscope lenses. Third,
the pair of filtered and undistorted images are rectified and
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input to a disparity calculation method that obtains a dense
disparity map, which is finally used as input to a triangulation
phase that estimates the 3-D coordinates of points.

Calibration: To start the reconstruction process, a pre-
liminary camera-calibration phase is required to estimate
the intrinsic (LK, R

K), extrinsic (R
L
R and R

L
t), as well as

the lens-distortion parameters. Since calibration parameters
are used in several steps within the stereo reconstruction
pipeline, it is important to obtain accurate calibration pa-
rameters. For this purpose, we used the MATLAB Camera
Calibration Toolbox [1] and we were able to calibrate the
stereo endoscope of the daVinci surgical platform with sub-
pixel accuracy (max 0.6 pixels of re-projection error). We
used a 3 × 3 cm. calibration checkerboard to achieve this
result.
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Fig. 1. 3-D reconstruction framework.

Deinterlacing and Filtering: Interlacing is commonly used
in video streaming to enhance motion perception to the
viewer. However, it can introduce undesired image artifacts
that will negatively alter the quality of the reconstructed
anatomical scene. To remove interlacing, a linear interpola-
tion algorithm [14] gives comparatively better results among
other deinterlacing algorithms on endoscopic images and
hence this algorithm is employed here.

Endoscopic images are also subject to noise, and a noise
removal step was adopted here to enhance image quality.
We used a Gaussian filter [13] with σ = 3 which showed
encouraging results. In order to have a fair comparison
between all the proposed stereo-reconstruction methods, in
this work we applied the same image pre-processing before
the disparity calculation stage.

Image Undistortion and Rectification: Image undistortion
algorithms have been used to correct images for the (radial)
lens distortion effects. Rectification uses the camera calibra-
tion parameters to align the left and right image to have
horizontal epipolar line, so the correspondence search space
can be effectively reduced from two dimensions (image-to-
image) to a 1-D search (image to epipolar line). In this pre-
liminary study we didn’t consider the effect of rectification.

A. Disparity Calculation

A disparity map is a matrix containing the distance (in
pixels) from each point in the left to the corresponding point
in the right image [3]. Disparity calculation algorithms take
a pair of undistorted and rectified images, as well as the
camera-calibration parameters, to estimate the disparity.

There exist three different approaches to calculate the dis-
parity map: sparse, dense, and semi-dense methods. Sparse
methods only compute disparity at a limited number of image
points (feature matches). Dense methods, instead, measure
similarity in a sliding window to find the most similar in the
other image. Most recent state-of-the-art methods have an
additional global optimization combined with block match-
ing [4]. Since semi-dense and sparse stereo reconstruction
algorithms do not work well in texture-less environments,
we focus on dense disparity algorithms.

Based on the results given in [5], this work will focus on
comparing three dense disparity calculation methods: Stereo
Block Matching (SBM), Stereo Semi-Global Block Matching
(SSGBM), and Variational (SVar) methods. The OpenCV
implementations of these methods are available at [6].

SBM is a real-time algorithm (can process a 1920×1080
in milliseconds) that uses moving average sliding-window
correlation and then finds extrema among different windows.
First of all, it creates a feature-image from left and right
pairs and applies correlation to find disparity to approximate
Laplacian of Gaussian method [7].

SSGBM [8] is based on the idea of pixel-wise match-
ing of mutual information and approximating a global, 2-
D smoothness constraint by combining 1-D constraints. A
constraint is added to support smoothness by penalizing
changes of neighboring disparities. Minimization is narrowed
to minimizing cost function along a single row of an image.
After calculating disparity, several steps are applied to refine
the map (such as removing peaks and Intensity consistent
disparity selection) [8].

SVar is based on a variational method that uses a combina-
tion of multilevel adaptive technique and multi-grid approach
to achieve a real-time performance. This method adapts
the regularizer based on the current state thus improving
convergence speed during optimization [9].

B. Triangulation

Triangulation estimates the position of a 3-D point by
reprojecting the corresponding pixels points found in the left
and the right images in the 3-D space [10]. During the past
years, several triangulation algorithms have been proposed.
Among all of them, in this paper we present a comparison
between the most popular: the OpenCV method, the Linear
algorithm [10], and the Optimal-triangulation method [10].

While the OpenCV method is fast (it only uses a matrix-
vector multiplication), the accuracy is one of its major
drawbacks. In fact, the OpenCV method assumes that the left
and right cameras are collinear and that the camera intrinsic
parameters are the same for both cameras, which is not true
in practice.

On the other hand, the Linear method [10] does not impose
any restrictive assumption about the camera calibration and
relative cameras’ pose, and uses two linear constraints for
each corresponding pair of pixels. SVD decomposition is
used to solve these linear equations [6].

The Optimal triangulation has a preliminary phase that
tries to minimize the pixel noise in the image plane by
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Fig. 2. Simulation Results: Comparison between stereo-triangulation
methods (Since the OpenCV triagulation has a high 3-D error, it is not
shown in the plots to make other methods comparable). (a) Re-projection
error for increasing pixel noise level. (b) Reconstruction error for increasing
pixel noise level.

shifting points towards the epipolar lines. After this phase, a
linear algorithm is applied to triangulate points. A detailed
description of this method is available in [10].

III. EXPERIMENTS

In this section we present an extensive comparison be-
tween the different combinations of disparity and stereo
triangulation methods described in Sect. II. The goal is to
compare both accuracy and speed for each individual steps
and of the overall reconstruction pipeline. For this purpose,
we designed three different set of tests. The first test is
a simulation in MATLAB to assess the triangulation error
by assuming full knowledge of the calibration and of the
corresponding points. The second and third parts consist
of using real images from the daVinci stereo endoscope of
both an in-lab model as well as of a laparoscopic sequence.
This test was useful to determine the overall accuracy of the
pipeline under different assumptions (of III).

A. Simulation

We assumed no noise in the calibration parameters and
used MATLAB to simulate the stereo endoscope, with the
same parameters than the real daVinci endoscope. A set
of 1000 randomly-generated points were projected onto the
image planes, and a pixel noise with an increasing power was
added to both correspondences. The error calculated is the
distance between the reprojection in the left image of both
the ground-truth and each reconstructed point. The results
shown in Fig. 2 are an average over 100 iterations for each
noise level and the noise level is increased from zero to four
pixels. As shown in this graph, error raises by increasing
noise level for all methods. However, the Optimal method
always outperforms the other methods. The OpenCV method
does not consider rotation between cameras and assumes that
both cameras have the same intrinsic parameters: as such, it
exhibits considerable error even with zero image noise.

B. Real Endoscopic Sequences

In this section, we present the comparison between several
3-D stereo reconstruction methods and evaluate the accuracy
of the overall pipeline on real endoscopic images. The aim
is to compare the performance of the nine combinations

between the three disparity and the three triangulation al-
gorithms (cf., Sect. II).

In-lab model: The first video sequence consists of an
accurate model built in lab (cf., Fig. 3(a)) so that we could
accurately compare the distances between 3d points (e.g.,
corners). The ground-truth distances between corners, d∗ij ,
are known from the model, where i and j are indexes of
specific corners. The error εij = d̂ij − d∗ij is the distance
between the estimated (3) and ground-truth distances in mm.
The RMSE was calculated according to these error values.
In this experiment, we used 10 frames from a video taken

2

1

3

4

5
6

7

d
12

d
46

d
14

(a)

d
14

(b)

Fig. 3. (a) Error metrics with in-lab model. (b) Reconstructed point cloud.

by the daVinci endoscope. For each image, we selected 30
line-segments with known length, d∗ij . Fig. 4 shows the
results of this experiment. As observed, the combination
of StereoSGBM with Optimal triangulation gives the best
results however, it is not real-time. Confidence level for the
mean reconstruction error using this sequence of image pairs
is 96%. Time consumption in ms. for each method is listed
in the Table under Fig. 4. The values presented represent
the time taken to estimate the 3-D point cloud from a pair
of endoscopic images (resolution:1920× 1080) on a core i7
3GHz laptop.

Laparascopic Sequence: Validation of a surgical-vision
system is an important step towards establishing the use
of such a system for clinical use. In order to validate
the results in a real-world scenario, we used the stereo
videos from phantom heart model from the Hamlyn Centre
Laparoscopic/Endoscopic Video Dataset [12]. The dataset
provides intrinsic, extrinsic and lens distortion parameters
as well as the ground-truth point cloud from a CT scan.

We first used the stereo images and the calibration param-
eter to reconstruct the 3-D point cloud. Second, the two point
clouds are aligned using the Iterative Closest Point algorithm
implemented by [18]. Third, the ground-truth CT scan was
used to calculate the error as the distance between each
corresponding points after the alignment. Fig. 5 illustrates
the error after registration for SSGBM, SBM and SVar using
Optimal triangulation. The box plot shows error for one pair
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Fig. 4. Reconstruction error and time consumption for 9 different
combinations of disparity and triangulation algorithms.
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Fig. 5. Reconstruction error for SBM, SSGBM and SVar on heart model.

of images. As shown in this figure, the SSGBM outperforms
the other methods and has smaller error.

Fig. 6 illustrates three different disparity methods on
a phantom heart model (resolution: 360×288). SSGBM
outperforms other methods and has a better visual output
compared to SBM and SVar. While SVar and SBM have less
accuracy for further objects, they still result in a promising
3-D reconstruction output and in faster computation time.

IV. DISCUSSION AND CONCLUSIONS

The medical imaging literature lacks a rigorous and ex-
tensive comparative study of stereo-reconstruction methods
from endoscopic imagery. In this paper, we presented a com-
parative study to illustrate the performance of each algorithm
used in the stereo reconstruction pipeline. We compared 9
different combinations of 3 disparity and stereo-triangulation
methods on controlled and real endoscopic images. As our
experiments illustrated, there is a trade-off between accuracy
and speed. SSGBM along with the Optimal triangulation
method has the best performance but, it cannot be used
for real-time reconstruction applications. On the other hand,
SBM is fast but it is not as accurate as the SSGBM. However
the SVar stands somewhere in between them. Therefore, we
suggest to use SSGBM for non real-time applications that
demand accuracy, and SBM for realtime purposes. In the
future, we will compare both GPU implementations of these
methods, as well as in real scenario (ex-vivo and in-vivo).

(a) (b) SBM(time: 101 ms)

(c) SVar(time: 163 ms) (d) SSGBM(time: 456 ms)

Fig. 6. Comparison between triangulation methods. (a) An image from
left camera of endoscope [12]. (b), (c), (d) Reconstructed point cloud
using StereoBM, StereoVar and StereoSGBM respectively, using Optimal
triangulation.
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