
  

 

Abstract—Mathematical modeling of drug transport can 

complement current experimental and clinical investigations to 

understand drug resistance mechanisms, which eventually will 

help to develop patient-specific chemotherapy treatments. In 

this paper, we present a general time- and space-dependent 

mathematical model based on diffusion theory for predicting 

chemotherapy outcome. This model has two important 

parameters: the blood volume fraction and radius of blood 

vessels divided by drug diffusion penetration length. Model 

analysis finds that a larger ratio of the radius of blood vessel to 

diffusion penetration length resulted in to a larger fraction of 

tumor killed, thereby leading to a better treatment outcome. 

Clinical translation of the model can help quantify and predict 

the optimal dosage size and frequency of chemotherapy for 

individual patients.  

I. INTRODUCTION 

Colorectal cancer (CRC) is one of the most common 
malignancies in the world; while metastatic CRC patients are 
routinely administered with chemotherapy, the five-year 
survival rate remains low [1]. It is helpful to predict and 
monitor each individual patient’s tumor response to 
chemotherapy drugs, in the hope that if the treatments are 
ineffective, they can be aborted in time to avoid 
accumulation of toxicity in the body as well as to mitigate 
patient expenses. However, current methods for predicting 
chemotherapy outcome primarily rely on data gathered 
through in vitro monolayer cell-culture experiments [2]. 
Such methods underestimate the influences of drug and 
microenvironmental factors (e.g., oxygen and nutrient 
gradients) on drug transport. For example, for a 
chemotherapeutic agent to successfully reach the tumor site, 
it has to first reach the blood vessels of the tumor through the 
circulatory system, cross the blood vessel walls, and traverse 
through the tumor interstitium [3]. Moreover, many studies 
have highlighted the role of tumor microenvironment and 
blood supply in drug resistance to chemotherapy [4-6]. 
Taken together, in order to predict the effects of a specific 
chemotherapy treatment, it is required to (1) study the 
delivery of chemotherapeutic agents percolating into the 
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tumor and (2) take into account the effect of the three-
dimensional tumor microenvironment in vivo on drug supply.  

We have been studying how a tumor’s biophysical 
properties affect drug transport using a combined 
mathematical modeling and experimental/clinical approach 
[7-11]. Specifically, we developed and validated a 
mechanistic steady-state model for predicting the fraction of 

tumor killed (
kill

f ) by chemotherapy in patients with CRC 

metastatic to liver [10]. More recently, we developed a time-
dependent model based on first-principles of cell biophysics 
that successfully predicted in vitro tumor cellular response to 
a variety of drugs via two drug delivery methods, free drugs 
and targeted nanodrugs, across different types of cancers [9]. 
We found that the targeted nanodrug method is more 
effective in delivering drugs than the free-drug method and 
overcomes drug resistance due to improved cellular uptake 
rates of drug. In this paper, we further extend the time-
dependent diffusion-based model [9] by accounting for 
spatial dependence, in order to develop a more clinically 
relevant mathematical model for predicting tumor response 
to chemotherapy. Parameter perturbation analysis of the 

model finds that a larger ratio of 
b

r  (blood vessel radius) to 

L (diffusion penetration length) leads to a higher fkill, 
indicating a better treatment effect. 

II. METHODS 

A. Mathematical Model 

We extend the previously developed time-dependent 

diffusion-based model [9] by introducing the space factor 

into the model:  
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where ( , )t x  and ( , )t x  are the drug concentration and 

the volume fraction of tumor cells, respectively, both 

dependent on time and space; D is the diffusivity of the drug, 

u
  the per-volume cellular uptake rate of drug, and 

k
  the 

death rate of tumor cells due to drug uptake.  

Because drug diffusion occurs much faster than the 

process of cell death, Eq. 1 can be reasonably solved at the 

steady state, i.e., / 0t   . The nondimensionalized forms 

of Eqs. 1 and 2 can then be described as:  
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where / Lx x
' , with 

u0
/ ( )L D    (the effective 

diffusion penetration length of the drug [12]), and 
1/

0 0

2'
( )

k u
t t    are the dimensionless space and time 

coordinates; the dimensionless drug concentration is defined 

as '

0
/   , and the tumor volume fraction is made 

dimensionless by '

0
/   .  

B. Parameter Estimation against Patient Data 

We consider a cylindrically symmetric domain 

surrounding a blood vessel (Fig. 1). The inner cylinder has a 

radius 
b

/r L  in dimensionless unit, representing the blood 

vessel at the center of the domain. We also hypothesize that 

the substrate supply for any location in a tissue is supported 

by the closest blood vessel, and thus estimate that 
1/ 2

b
/ ( )r L BVF  is the radius of the influenced tissue 

volume of the vessel, where BVF (i.e., blood volume 

fraction) is < 1. The influenced tissue volume refers to a 

specific block of tissue that relies on this blood vessel for 

supply of oxygen and other essential chemicals.  

We obtain parameter values for 
b

r  and L from a CRC 

patient data set containing 27 cases. As demonstrated in [10], 

the predicted 
kill

f  for each patient is described as a function 

of parameters, rb , BVF, and L (diffusion penetration 

length), all of which can be directly measured from 

histopathology or imaging data. A least-squares fitting was 

performed to the measured 
kill

f  and BVF. This resulted in 

estimates of two parameters, 
b

r and L, which produced the 

best fit. Figure 2 shows a comparison of the predictions with 

the direct measurements of 
kill

f  (see [10] for how to measure 

kill
f  from patient histopathology imaging data). The radius 

of the blood vessels 
b

r  = 15.83 μm obtained from this fitting 

was consistent with published data [13] and also with our 

histopathology measurements. The diffusion penetration 

length (L) from regression analysis is 155.06 μm. Using 

Mathematica, statistically significant P values were obtained 

from nonlinear regression analysis for both 
b

r  and L.  (Fig. 

2, inset).  

III. RESULTS 

We performed a parameter perturbation study and 

simulated the model (Eqs. 3 and 4) in a cylindrically 

symmetric domain surrounding a blood vessel (Fig. 1) to 

examine the impact of each model parameter on the fraction 

of tumor killed 
kill

f . Standard model parameter values were 

set as follows: L = 155.1 μm and 
b

r  = 15.8 μm, giving 

b
/r L   = 0.1; BVF was set to be 0.054, i.e., the mean of the 

measured BVF values. For each parameter, we created 11 

variations, through a range of +/-50% of the parameter’s 

standard value and with a 10.0% variation interval. Note that 

a 50% variation has been assumed as reasonable in systems 

modeling analysis [14-16]. Accordingly, this generated a 

total of (11 × 11 =) 121 parameter variation pairs, covering a 

wider range of parameter space.  

Figure 3 shows the simulation results of 
kill

f  from 

changing BVF and 
b

/r L , at t = 3 dimensionless time units. 

We find that smaller 
b

/r L  and greater BVF values lead to 

larger 
kill

f  and thus increased treatment effects. This is 

because that in our simulations, the domain size (i.e., the 

 

 
 

Fig. 1. Model domain hypothesis. By diffusion, a blood vessel supplies 

substrates to the tissue volume cylindrically surrounding the vessel. We 

hypothesize that at each location inside the tissue, the substrate supply 

is supported by the closest blood vessel. Thus, the tissue influenced by 

the blood vessel can be estimated to be between a cylinder of radius 
1/ 2

b
/ ( )r L BVF  in dimensionless unit and the vessel itself with radius 

b
/r L  in dimensionless unit.  

 

 
 

Fig. 2. Model fitting to patient data and comparison of model predictions 

with the patient data. Symbols: measurements with standard deviations 

from histopathology images of the patients with CRC metastatic to liver; 

each point represents an individual patient. Dark blue: least-square fit; 

coefficient of determination R2 = 0.86. Inset: parameter values obtained 

from the fit. 

2481



  

radius of the outer cylinder) was determined by 
1/ 2

b
/ ( )r L BVF . Thus, a larger 

b
/r L  or a smaller BVF 

represented a larger tissue volume relying on the modeled 

blood vessel for drug transport, and hence would require a 

longer time to achieve the same 
kill

f .  

IV. DISCUSSION 

In clinical practice, robust biomarkers have long been 
used to evaluate and predict chemotherapy outcomes in 
patients, but our modeling-based approach presented here 
provides a simpler way to achieve this, possibly at a much 
earlier stage in the course of treatment. Our approach not 
only helps to predict the tumor’s response to drugs before the 
start of the treatment (accordingly, lowering the cost and 
toxicity that the patients might be exposed to), but also 
provides a quantitative understanding of the biophysical 
barriers that are responsible for the resistance of cancer cells 
to chemotherapy. In this study, the model specifically 
demonstrates that biophysical barriers, especially drug 
diffusion gradients in the microenvironment in vivo, are 
significant factors in determining the efficacy of drug 
delivery, and thus should be considered as equally important 
as the underlying intrinsic genetic/molecular and cellular 
programs in understanding chemotherapy resistance.  

As demonstrated, blood volume fraction (BVF) for each 
patient can be used in the mathematical model for the 
prediction of treatment outcome. It is particularly noteworthy 
that this parameter can be easily measured from histology 
images or directly assessed from CT scans (i.e., using the 
easy-to-obtain CT scans data to quantify BVF; see [10] for 
an example on predicting chemotherapy outcome based on 
standard contrast CT imaging data). Accordingly, for each 

individual patient, an optimal treatment strategy specific to 
this patient, including dosage and dosing schedule, can be 
developed prior to the actual treatment. Model analysis 
shown in Fig. 3 suggests a strategy to improve treatment 
outcome. That is, to increase BVF (which, in turn, leads to 
an increase in 

kill
f ), we can promote angiogenesis first at the 

target tumor site before actual chemotherapy treatment. 
However, we note here that this strategy is contrary to the 
concept of current anti-angiogenesis therapy [17]. This 
model can be used alone to predict the fraction of tumor 
killed or in combination with other methods such as the 
apparent diffusion coefficient from diffusion weighted-MRI 
in predicting tumor size at a future time point.  

With necessary modifications, the model concept 

presented here can be applied to the evaluation of other 

treatment methods in vivo, such as nanoparticles and 

immunotherapy. In future development, additional layers of 

complexity including other factors or biophysical barriers, 

such as hypoxia and acidic extracellular pH, effect of cell-

cell and cell-matrix interactions, and effect of chemotherapy 

on the tumor vasculature will be added to the model to 

improve the model’s predictive power.  

V. CONCLUSION 

We present a mathematical model to predict time- and 

space-dependent tumor response to chemotherapy. The 

model has been validated with clinical CRC patient data. We 

find that the diffusion-related parameters had a significant 

impact on the amount of drug delivered to the tumor, 

suggesting clinical applications of the model.  

 
 

Fig. 3. The effects of combinatorial change in BVF and 
b

/r L  on the fraction of tumor killed 
kill

f .  
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