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Abstract— We present a novel approach to gait analysis
using ensemble Kalman filtering which permits markerless
determination of segmental movement. We use image flow
analysis to reliably compute temporal and kinematic measures
including the translational velocity of the torso and rotational
velocities of the lower leg segments. Detecting the instances
where velocity changes direction also determines the standard
events of a gait cycle (double-support, toe-off, mid-swing and
heel-strike). In order to determine the kinematics of lower
limbs, we model the synergies between the lower limb motions
(thigh-shank, shank-foot) by building a nonlinear dynamical
system using CMUs 3D motion capture database [1]. This
information is fed into the ensemble Kalman Filter framework
to estimate the unobserved limb (upper leg and foot) motion
from the measured lower leg rotational velocity. Our approach
does not require calibrated cameras or special markers to
capture movement. We have tested our method on different
gait sequences collected from the sagttal plane and presented
the estimated kinematics overlaid on the original image frames.
We have also validated our approach by manually labeling the
videos and comparing our results against them.

I. INTRODUCTION

Gait analysis has been an essential part of rehabilitation
science and clinical practice, helping to establish evaluation
and treatment planning for people with disability. Studies
using 3D markers to establish normal gait parameters [6], [7]
have helped distinguish normal and abnormal gait using data
collected from limb kinetics and kinematics. The kinematic
variables (velocities, accelerations and joint angles) were
extracted from the recorded 3D data. Limitations for the
use of these methods for gait analysis include expense,
need of capture in lab settings and use of markers that
may restrict or inhibit movement. Recently, the focus has
been on developing markerless vision based motion capture
systems to analyze human movement for different appli-
cations e.g. visual surveillance, clinical analysis, computer
animation/games, robotics and biometrics. Since most of the
movement in the knee, ankle and hip occurs in the sagittal
plane, markerless gait analysis is generally 2D oriented.
In [15] Center of Mass (CoM) of the body was used to
determine the phases of the gait cycle; this is very sensitive to
the accuracy of the extracted silhouettes of the moving body.
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Recent work [3] focusses on the spatiotemporal segmentation
of moving body parts and using snakes [9] in order to trace
the outline of the body.

We will be focussing mostly on the lower limb segments
of the human body. We take advantage of highly repetitive
normal gait and model the relationship between upper leg-
lower leg and lower-leg-foot motions using non linear models
and use Kalman filters to estimate the upper leg and foot ve-
locities given the lower leg data. Kalman filter has been used
previously for constant velocity constraint [8]. To the best of
our knowledge, the research described in this paper is the first
to model a relationship between two segments and use this
non linear dynamic model with Kalman filter to estimate limb
motion. We extend the idea of gait events (double-support,
mid-swing, toe-off and heel-strike) introduced in [11]. We
segment lower legs and apply image motion models to find
the change in the velocity direction corresponding to toe-
off and heel-strike events. We build motion models from a
relatively small 3D data set (attributed to the restricted range
of motion for normal gait). We then use Unscented Kalman
filter to estimate the upper leg and foot motion.

Section II describes the methodology for finding different
gait events and estimating the kinematics of lower limb
segments. Section III presents results and validation. Section
IV provides the conclusion and discussion.

II. METHODOLOGY

We first extract the image frames from the video data.
The silhouette is extracted using background subtraction and
normal flow [13] is computed from pairs of image frames
(see Fig. 1a). Using the upper 30% of the body height,
we estimate the instantaneous up-down and forward torso
velocity using the method in [11]. The zero crossings in the
torso up-down velocity correspond to double support and mid
swing events of the gait cycle. Toe-off and heel-strike events
can be identified by observing the instantaneous rotational
velocity of the lower leg segments (shanks). These events
occur at zero values of the shank’s rotational velocity. For
finding these events, we consider the lower 28.5% of the
body height H as suggested in [14]. Once we have obtained
the keyframes corresponding to double-support and mid-
swing, we divide the whole gait cycle into two different sets
depending on their distance from the keyframes. A frame
closer to mid-swing gets assigned to a different set than the
frame closer to double support. We use spatial and motion
segmentation in these two sets to compute the lower leg
rotational velocities. Frames that are closer to double support
are segmented using spatial information whereas the frames
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that are closer to mid swing are segmented using motion
information. In the process, we also introduce histograms of
normal flow.

We formulate a nonlinear model to capture the relationship
between upper leg - lower leg and lower leg - foot motions.
The model is used together with the Unscented Kalman filter
to estimate the unknown upper leg and foot motion based on
the lower leg rotational velocity.

A. Computing lower leg velocities from images

We use the approach described in [11] to compute the
instantaneous translational velocity of the torso. Fig. 1a
shows an example of the torso normal flow and Fig. 1b
shows the instantaneous vertical (up-down) velocity profile
of the subject’s torso. The zero crossings are computed
automatically to identify the consecutive double-support and
mid-swing phases of the gait cycle. The instances of torso
velocity crossing from -ve to +ve value correspond to double
support events whereas the frames where velocity changes
from +ve to -ve determine mid-swing events.
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Fig. 1: (a) An example showing normal flow computed using
[13] for the torso. (b) Instantaneous up and down velocities
computed for the torso The zero crossings are marked by red
diamonds.

1) Spatial Segmentation: For frames that are closer to
double support, the lower legs are not occluded from one
another. This makes the segmentation process easier. We first
project all the pixels belonging to the lower 28.5% of body
height on the horizontal axis and find the separation between
two limbs based on the local minimum between two local
maxima in the projected number of pixels. We then label the
pixels on different sides of the dividing point as belonging
to two different lower leg segments. Fig. 2a illustrates the
segmentation.

2) Motion Segmentation using Histograms of Normal
Flow: We compare the motion of the lower leg segments
with the torso motion in frames closer to mid swing. In these
frames, the swinging limb has a velocity greater than the
torso velocity whereas the stance (standing) limb’s velocity
is lower compared to the velocity of the torso. The lower
legs in these selected frames are occluded by different

amounts, therefore we use superpixels: first to compute a
coarse motion model and then use it to refine the model at
pixel level eliminating the noise and interference with the
correct motion estimation. Hence, we divide the region in
overlapping superpixels of size 20 × 20. We introduce the
concept of histograms of normal flow. For each superpixel,
we assign the pixels into 16 different bins based on their
orientations. The count of pixels, the median value and the
standard deviation for each bin is computed. Let A16×2 be a
collection of unit vectors representing 16 bins. We have used
weighted least squares [2] for solving the histogram values.
The weight matrix, W16×16 is a diagonal matrix in which the
terms correspond to the number of flow vectors in each bin.
B16×1 is a vector containing the median magnitude of the
vectors stored in the particular bin of interest. The resultant
flow vector for the superpixel, v, is given by,

(ATWA)v = ATWB (1)

Fig. 2c shows the normal flow values for the superpixels
computed using our method.
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Fig. 2: (a) The segmented lower legs are shown in red and
green based on spatial information. (b) Histogram of normal
flow using 16 bins for edge orientations for a 20 × 20 su-
perpixel. (c) Histogram solved using weighted least squares.
(d) Segmentation using histograms of normal flow.

Once we compute the resultant flow values of superpixels,
we compare its motion magnitude against that of the torso.
The superpixels whose motion is lower than that of the torso
are classified as belonging to the standing (stance) limb.
The superpixels whose magnitude are greater than the torso
motion are labeled as belonging to the swinging leg.

After the segmentation of lower segments, we describe the
motion of the lower leg segments by translation in the sagittal
plane, (tx, ty), and rotation, ω, around an axis orthogonal
to the sagittal plane. It can be formalized using a reduced
version of an affine motion model as described in [13].
We use displacement as an estimate of velocity. The model
defines (ẋ, ẏ), i.e. the instantaneous velocity at point (x, y),[

ẋ
ẏ

]
=

[
0 −ω
ω 0

] [
x
y

]
+

[
tx
ty

]
(2)
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Using multiple edge points and the corresponding normal
flow vectors, the parameters (ω, tx, ty) are computed as the
linear least squares (LS) solution [13].

After spatial segmentation, two different motion models
are fitted in each frame corresponding to the motion of two
segmented lower legs. While performing motion segmenta-
tion, we first compute two different motion models according
to the labeling of the superpixels. The models are fitted to
the entire lower leg segment region (at the pixel level) and
residuals are computed. Based on the value of residuals, two
finer motion models are fitted to the lower leg segments.

3) Lower Leg Rotational Velocities and Angular Positions:
The parameter ω estimated in Sec. II-A.1 and Sec. II-
A.2 represents the instantaneous rotational velocity of lower
legs at each frame. The residual error in model estimation
in certain frames can contribute to an inaccurate velocity
profile. This error is accumulated over frames. In order to
account for this inaccuracy, we find the orientation of lower
legs in frames corresponding to double support and mid
swing. To achieve this, we fit Radon transforms [9] to the
boundaries of the segmented lower legs, which gives the
desired orientation. The residual error is then distributed over
the intervals between instances of double support and mid
swing.
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Fig. 3: Instantaneous rotational velocities computed for the
two lower leg segments using our method. The zero crossings
are marked using black and magenta diamonds.

Fig. 3 shows the instantaneous rotational velocity profiles
of both left and right lower leg segments of a subject
for a single sequence. The zero crossings are computed
automatically and correspond to the toe-off and heel-strike
events of the gait cycle. The initial value for the angular
position is automatically computed at one of the double
support or mid swing frames. Integrating the velocity profiles
gives us the angular positions of lower legs for the entire
sequence. This information is then used in Sec. II-C to
estimate the angular positions of upper leg and foot.

B. Modeling Nonlinear Dynamic Systems

In this section we derive a nonlinear state space system
[5] to mathematically model the relationship between a pair
of joint angles through differential equations. We use 3D

motion capture data with angular positions of the upper leg
(hip to knee), lower leg (knee to ankle) and foot (ankle to
toe) to optimize the parameters of the model.

The upper leg-lower leg and lower leg-foot sets of angular
positions are each modeled as a two-state nonlinear dynamic
model. It has been shown that in applications where the time-
varying variables are coupled, the individual velocities can
be defined as a nonlinear function of the positions [10]. The
function chosen to model the angular velocities in gait is a
sum of N th order polynomials of the angular positions as
well as a coupling function that is a product of both angles.

θX(k + 1) =f(θX(k),aX) + f(θY (k), bX)

+ cXθX(k)θY (k)

θY (k + 1) =f(θX(k),aY ) + f(θY (k), bY )

+ cY θX(k)θY (k)

(3)

where {X,Y } represent {upperleg, lowerleg} and
{foot, lowerleg} for the two models respectively. θX , θY are
the angular positions. f(x,a) is an N th order polynomial
function of the variable x. a is an N -dimension vector
representing the coefficients of the polynomial. c is the
coefficient of the coupling function.

f(x,a) = a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1 (4)

The two equations in Eq. 3 represent a coupled nonlinear
dynamic system with the state variables representing the
motion of the lower limbs. The parameter set is represented
by ΦX = {aX ,bX , cX}, where X = H/K/A represents
the upper leg / lower leg / foot. We choose a 5th order
polynomial for our model (N = 5).
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Fig. 4: Observed (3D data) and computed model

Data obtained from the CMU Graphics Lab Motion Cap-
ture Database is used to estimate the optimal parameter set
by minimizing the least squares error [2] between the angular
postions calculated from the model and observed from the
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3D data.

ΦX = arg min
ΦX

[θX,model − θX,obs]
2

To further improve the accuracy of the computed angular
positions, one gait cycle is divided into two phases based on
the angular position of the shank - (i) Toe Off (TO) to Heel
Strike (HS) and (ii) HS to TO. Each phase is represented
by a different set of parameters (ΦX,1,ΦX,2) in the model.
The onset of each of the phases can be detected using image
flow techniques described in Sec. II-A.3 (Fig. 3). The model
parameters switch appropriately at the time of transition
from one phase to another. The dynamics of the model is
independent of the initial angular positions. It only depends
on the correct switching between the different parameter sets.

Fig. 4 shows the observed angular positions with the model
angular positions for 2 gait cycles. The upper leg flexion,
lower leg flexion and foot flexion is shown. Phase 1 data
points are represented by squares and phase 2 by triangles.
The range of motion for each individual varies slightly within
an established interval [6], [7]. We develop different models
based on the range of motion of the shank, and choose
the appropriate parameter set after comparing the results of
Sec. II-A.3, with the existing database.

C. Unscented Kalman Filter

We now implement an ensemble Kalman filter [4] with the
derived nonlinear model to estimate the upper leg and foot
angular positions from observations of the lower leg angular
position obtained from images (Sec. II-A.3). The nonlinear
dynamic model can be represented in terms of a state and
output equation

x(k + 1) = g(x(k),Φ) + w(k)

y(k) = h(x(k)) + v(k)
(5)

The dynamics of the state vector, x = [θX , θY ]T , is described
by Eq. 3. The output, y, is the observed variable. In our
case, y is the lower leg angular position, θK , computed in
Sec. II-A.3. w and v are the process and measurement noises
respectively and are modeled by a Gaussian distribution.

The Kalman filter is implemented to estimate the unob-
served state (θH and θA) using observations obtained from
image flow analysis. The unscented transform [12] is applied
to generate an ensemble of data points from the a priori state
estimate, x−(k). The covariance matrix of this ensemble is
represented by P−

xx(k). The ensemble is propagated forward
to the next time step according to Eq. 5 and the predicted
output, y−k is calculated. The Kalman gain, a posteriori
covariance matrix, P+

xx(k) and state estimate, x+(k) are
computed according to the following equations.

K(k) =Pxy(k)Pyy(k)−1

P+
xx(k) =P−

xx(k)− Pxy(k)Pyy(k)−1Pyx(k)

x+(k) =x−(k) +K(k)[y(k)− y−(k)]

(6)

The estimation begins at the toe off event. An identity
matrix of the appropriate dimension is used to initialize
the covariance of the ensemble. θH is initialized at zero
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Fig. 5: Estimation of left (blue) and right (red) upper
leg, lower leg and foot angular positions. The dotted lines
represent manually labeled angular positions of limbs.

degrees and requires 3-4 observations to converge to the
true value. The advantage of using the ensemble with the
unscented transform is that it eliminates the need to linearize
the nonlinear dynamic model.

Fig. 5 shows the estimated angular positions of the lower
limbs for a complete gait cycle. To compare the estimates
with the true values, the angular positions were labeled
manually and are represented by dotted lines.

III. RESULTS

We have captured five sequences of gait data with different
types of shoes and clothing and processed the data to detect
different events of the gait cycle and estimate the kinematics
of the lower limbs. The data were recorded in the sagittal
plane at 60 frames/second at resolution 640×480 pixels per
frame using Point Grey Dragonfly R©2 color camera. Each
subject walked for 18 feet before being recorded to enable
them to reach a consistent walking pattern.

A. Kinematics of lower limbs

Fig. 6 shows the image frames from two sequences, over-
laid with our results of tracking the lower limb segments. We
have projected the angular positions (hip-knee) and (knee-
foot) estimated in Sec. II-C on the corresponding image
frames. It can be seen that the motion of the lower limbs
is computed accurately using our technique.

B. Validation

To establish the validity of our method, we have compared
our results with manually labeled angular positions of the
lower limbs in all the video sequences. Table I gives the
average error (in degrees) in the computation of lower limb

2515



Fig. 6: Frames overlaid with our results of motion estimation of lower limb segments.

angular positions using our method. Usually, the normal and
abnormal gait parameters differ by more than 7 − 8◦. An
estimation error of less than 5◦ is acceptable for practical
purposes.

TABLE I: Table listing the average error (in degrees) in the
computation of angular positions of different lower limbs

Upper Leg Lower leg Foot Average
Left 3.66◦ 2.11◦ 5.76◦ 3.84◦
Right 4.71◦ 2.45◦ 6.52◦ 4.56◦

Average 4.18◦ 2.28◦ 6.14◦ 4.20◦

IV. CONCLUSIONS AND DISCUSSION

We have presented a markerless system to analyze human
gait. We have used normal flow and motion models to com-
pute the torso instantaneous velocity and rotational velocities
of lower leg segments accurately. The key phases of a gait
cycle (double-support, heel-strike, mid-swing, toe-off) were
identified where the translational or rotational component of
displacement changes its direction (instantaneous velocity is
zero). We then fitted a non-linear dynamic model to 3D
motion capture gait data defining the relationship between
the upper leg - lower leg and lower leg -foot motions. We
used Unscented Kalman filter to estimate the upper leg and
foot rotation based on the observations of the lower leg
rotational velocity. This novel approach, enables accurate
identification of key phases of gait and the velocities of lower
limb segments. Several examples were presented showing
the overlay of our results on the original frames of the video
sequences. We believe this method can be reliably used as an
assessment tool to determine individual gait patterns, identify
abnormalities in need of treatment and assess treatment
response. In the future, we would like to model the relative
relationships among other body segments and utilize Kalman

filter for non linear motion analysis for the whole body. Also,
we would test our approach with outdoor video sequences
and for multiple views. Applications to pathological gait,
and to activities in which the sampling is greater than 60
frames/sec, will require additional investigation.
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