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Abstract— This study investigated nonlinear patterns of
coordination, or synergies, underlying whole-hand grasping
kinematics. Prior research has shed considerable light on
roles played by such coordinated degrees-of-freedom (DOF),
illuminating how motor control is facilitated by structural
and functional specializations in the brain, peripheral nervous
system, and musculoskeletal system. However, existing analyses
suppose that the patterns of coordination can be captured by
means of linear analyses, as linear combinations of nominally
independent DOF. In contrast, hand kinematics is itself highly
nonlinear in nature. To address this discrepancy, we sought to
to determine whether nonlinear synergies might serve to more
accurately and efficiently explain human grasping kinematics
than is possible with linear analyses. We analyzed motion
capture data acquired from the hands of individuals as they
grasped an array of common objects, using four of the most
widely used linear and nonlinear dimensionality reduction
algorithms. We compared the results using a recently developed
algorithm-agnostic quality measure, which enabled us to assess
the quality of the dimensional reductions that resulted by
assessing the extent to which local neighborhood information in
the data was preserved. Although qualitative inspection of this
data suggested that nonlinear correlations between kinematic
variables were present, we found that linear modeling, in the
form of Principle Components Analysis, could perform better
than any of the nonlinear techniques we applied.

I. INTRODUCTION

Complex hand movements underly a diverse variety of
everyday activities. The execution of these movements de-
mands the coordinated control of more than 25 degrees of
freedom in the hand, which can be considered to correspond
to the angles of the joints whose rotations parametrize the
poses of the hand during the executed kinematic trajectory.
However, both everyday experience and the scientific litera-
ture on the neural and biomechanical control of movement
make it clear that we are not able to independently control
each of these degrees of freedom (DOF), either consciously
or automatically. Rather, there is ample evidence that this
is due to couplings at the biomechanical, motor and neural
levels [1], [3], [6], [8], [9], [11], [13], [12], [5], [17], [20].
The notion of hand synergies has been proposed to explain
the neural, motor, and biomechanical coordinations between
the DOF at respective hierarchical levels. A synergy is a
collection of nominally independent DOF that are organized
into a collective entity acting in union to execute a task, such
as to find a maximally stable grasp configuration.

Because the parametric combination of a small number
of hand synergies can explain variation in a larger number
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of variables (e.g., joint angles, muscle activations), these
synergies can be regarded as implementing a form of di-
mensionality reduction (DR). The latter refers to a class
of machine learning algorithms aimed at transforming the
data so as to reduce the number of variables required to
specify each configuration while retaining content in the
original signal. DR is effective when the observed data
is not distributed uniformly, but instead possesses lower
dimensional structure that can be captured as relations among
the original variables.

Previous research has analyzed kinematic, force and EMG
data during grasping, yielding strong evidence that lower
dimensional structures exist at multiple stages of the motor
control hierarchy, and providing an explanation of time-
dependent grasping data in terms of synergies, which consist
of linear transformations of the original variables (joint angle
variables, in the case of interest) that are able to effectively
capture the observed variations (here, measured kinematic
trajectories).

To date, however, the analyses in these investigations
have focused exclusively on linear patterns of coordination,
corresponding to linear subspace models of dimensionality
reduction (most notably principle component analysis, PCA),
whereas motor control and kinematics of the hand are
nonlinear [9]. This suggests that instead of analyzing the
corresponding DOF using linear subspace representations, it
could be advantageous to employ models that can capture
nonlinear patterns of coordination underlying hand move-
ments, however this has not been previously tested.

To investigate this, we analyzed hand kinematics using
a dataset describing joint angle trajectories obtained from
motion capture data during object grasping. We analyzed this
data using four different linear and nonlinear dimensionality
reduction algorithms, and assessed the quality of each using
an algorithm-independent measure of the extent to which
each lower-dimensional representation preserved neighbor-
hood information in the data.

II. METHODS

We analyzed 20-dimensional kinematic temporal trajecto-
ries of the hands of six individuals performing 12 different
grasps, using data from a published and publicly available
database. We quantified the ability of four different linear
and nonlinear dimensionality reduction (DR) algorithms to
capture the information in this data by using these algorithms
to reduce dimensionality from the original 20 to a smaller
number D, with 1 < D ≤ 20. We compared the results of
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Fig. 1. Visualizations of the preprocessed data obtained by projecting it onto successive pairs of dimensions. The visualizations are suggestive of
significant correlations between dimensions, and appear to evidence nonlinear trends, notably in projections onto (θ17, θ18), (θ15, θ16), and (θ13, θ14).
These observations provided empirical motivation to the nonlinear analyses investigated here.

these methods using a DR quality metric derived from prior
literature.

A. Data

The data consists of 276 trials of kinematic trajecto-
ries in the form of 20 time-dependent joint angles of
the hand recorded during object grasping. The data we
used was obtained from the DLR human grasping database
(www.handcorpus.org), which consists of optical motion
capture recordings during whole-hand grasping of a subset
of objects used in prior research of Santello et al. [13]. Each
trial consists of a trajectory measured while an individual
grasped a specified object in a prescribed way. Six different
individuals, 23 different objects, and two tasks are repre-
sented, yielding the total of 276 trajectory exemplars. Each
such trajectory is described by a time-varying set of joint
angles. The trajectories of joint angles (in radians) consist
of nf × na matrices, where nf is the number of discrete-
time frames of data (nf ≈ 250) for each trial, and na is the
number of joint angles (na = 20).

B. Analysis and dimensionality reduction algorithms

We first preprocessed the data, by performing an infilling
procedure to replace missing components of data vectors
(less than 1% of the total data), using mean values to replace
the missing values. We combined data from all subjects,
grasps, and objects into a single data matrix. Since this data
was highly correlated in time, and excessively large for our
analysis, we downsampled the data in time by a factor of
20. The resulting preprocessed data is visualized in Fig. 1,
where it was projected onto successive dimension pairs in
the original data space.

The data was subsequently analyzed using dimensionality
reduction (DR), a transformation of the data that aimed to
reduce (from 20) the number of variables in each frame while
retaining content in the original signals. We compared four

different algorithms for this purpose. We briefly describe
them here:

Principle components analysis (PCA): This procedure
performs a linear orthogonal transformation of the variables,
rendering them largely uncorrelated, then reduces dimen-
sionality by retaining only D < 20 variables with the
highest variance over the dataset [4]. In our application, it
is implemented by applying singular value decomposition
(SVD) to the evolving hand posture data captured during
interaction. The SVD determines orthogonal matrices U and
V and a diagonal matrix Σ such that X = UΣV T (here
T denotes transpose). U consists of joint angle variables
that define eigenpostures of the hand [8], [13], while V
consists of temporal weightings of the eigenpostures, yield-
ing a sequence of values defines the contribution of each
eigenposture at each successive time index. The diagonal
entries of matrix Σ are the singular values, and indicate the
relative amount of variance explained by each eigenposture-
temporal weighting pair.

Polynomial Kernel PCA: This algorithm performs a similar
task to that of PCA, except that a kernel transformation is
used in order to efficiently compute the result of applying
PCA to a dataset consisting of the original variables and non-
linear combinations thereof [15]. The kernel function of the
algorithm, K(x,y), determines the effective nonlinearities
that are implemented by the algorithm. In a first version of
Kernel PCA, we employed a polynomial kernel, of the form
K(x,y) = (xTy + 1)q, q > 0.

Radial Basis Function Kernel PCA: In this version of
Kernel PCA, we employed a radial basis function (Gaus-
sian) kernel, yielding a higher complexity DR model that
can be thought of as incorporating nonlinearities of all
orders in the reduction algorithm. The kernel is K(x,y) =
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exp(− ||x−y||
2

σ2 ).

Neural Network (Nonlinear) PCA: This algorithm consists
of an artificial neural network-based auto-encoder that is
used to perform the DR transformation [10]. The network
is trained, with both weights and inputs estimated using
a variant of the backpropagation algorithm. The training
algorithm estimates a mapping from the lower-dimensional
space (represented by the network inputs) to the higher
dimensional space (captured through the outputs).

In each of these algorithms, the number D of reduced
dimensions enters as a parameter that can be freely selected.
The quality of the dimensionality reduction is assumed to
depend on both the choice of algorithm and the dimension-
ality, D. We used custom software together with published
Matlab toolboxes in order to perform the Dimensionality
Reduction of the data using these algorithms [18], [16]. We
then implemented and applied a DR quality metric (described
below) in order to evaluate and compare the results.

C. Comparing DR algorithms

Performing a fair comparison of the quality of dimension-
ality reduction algorithms is not straightforward, since each
such algorithm has been designed to be optimal with respect
to a specific and largely algorithm-defining criterion. Several
evaluation methods have been proposed in prior literature
[19], [2], [18]. Here, we used a quality measure based on the
co-ranking matrix [7], which measures the extent to which
the DR algorithm being evaluated preserves the rank-ordered
distance to other points in the dataset.

The algorithm is computed as a function of the distance
matrices of the original and dimensionally reduced data. If
the original data consists of data vectors yi, where y =
(y1 y2 . . . yN ) and i indexes the data instance (in our
dataset, yi = θi, the ith joint angle), then the distance matrix
is

δij = ||yi − yj ||

Similarly, if the lower-dimensional data consists of vectors
xi, where x = (x1 x2 . . . xD), then the corresponding
distance matrix is

dij = ||xi − xj ||

The next step is to compute the rank matrices P and R
corresponding to the distance matrices δ and d. These encode
the rank order of points in the respective datasets, and are
given by

Pij = |{k : δik < δij or (δik = δij and 1 ≤ k < j ≤ N)}|

Rij = |{k : dik < dij or (dik = dij and 1 ≤ k < j ≤ N)}|

where |A| denotes the cardinality of the set A. Then the co-
ranking matrix q, which measures the degree of coincidence
in the rank order of points before and after transformation,
is computed by

qkl = |{(i, j)|Pij = k and Rij = l}| (1)

The interpretation is as follows: the more of the large
values of elements in the co-ranking matrix that concentrate
toward the diagonal, the greater the distance over which
information in high dimensional matrix is preserved by the
low dimensional one. Furthermore, errors at small values of
the rank can be regarded as more important than those at
large rank values. This is because small rank errors indicate
the capability of the DR algorithm to map data (here, hand
postures) that are similar to points that are near to each
other. For this reason, we use a co-ranking based quality
measure, Q(Kmax), which counts the number of points that
remain within the same set of Kmax nearest neighbors after
transformation. It is computed by averaging the co-ranking
matrix over increasing values of K up to Kmax

Q(Kmax) =
1

Kmax

Kmax∑
K=1

1

KN

K∑
i=1

K∑
l=1

qkl (2)

In our evaluation, we fixed a value of Kmax = 5 based
on preliminary testing, and computed the quality of Q for
each algorithm for each value of the number of reduced
dimensions, D.

III. RESULTS

We performed dimensionality reduction of the data for all
possible values of the target number of dimensions, 1 < D ≤
20, and all algorithms, then computed the co-ranking based
quality measure using Equation 2.

The results consist of the values of the quality measure
Q(D) for each algorithm, at each possible values of the
reduced number of dimensions, D. They are shown in
Figure 2, which captures the performance of each respective
algorithm for at each level of reduction. As is apparent from
the the figure, the linear DR algorithm (PCA) fared better at
all values of D > 3. Among the nonlinear algorithms, Radial
Basis Function Kernel PCA perfomed best, but was typically
at least 5% worse than PCA. The results obtained from
Nonlinear PCA fluctuated as a function of the number of
reduced dimensions, D. It is possible that this is attributable
to instances in which the NLPCA algorithm became trapped
in a local minimum of the neural network error surface.
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Fig. 2. Dimensionality reduction quality Q(D) for each algorithm as a
function of the number D of reduced dimensions.
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IV. CONCLUSIONS

The results presented here indicated that PCA was able
to perform dimensionality reduction of higher quality than
was obtained with any of the nonlinear DR algorithms
investigated. In contrast, Fig. 1, which presents projections
of the original raw data onto pairs of dimensions, appears to
provide evidence of nonlinear correlations in the kinematic
data, notably through scatterplots of (θ17, θ18), (θ15, θ16),
and (θ13, θ14). A number of potential explanations could
be proposed. First, PCA is based on an orthogonal trans-
formation, which preserves Euclidean distance. This may
suggest that the Euclidean distance based quality function we
used, Q(D), was somewhat biased in favor of PCA. Another
possible explanation is that PCA was able to capture linear
correlations in the data more efficiently than was possible
with the nonlinear algorithms, although this requires further
investigation. An alternative quality measure that could be
used to evaluate the DR techniques in this application is
that of sensorimotor efficiency (SME) [14], which connects
to information theoretic ideas. The basic idea behind this
approach is to capture the amount of information transmitted
by hand shape about the target to be grasped, which might
make better use of the additional information about grasping
that is available in this dataset. Several other nonlinear DR
algorithms, including t-Distributed Stochastic Neighbor Em-
bedding and Local Linear Embedding, were not used here,
due to difficulties posed in computing the quality measure
Q(D). It is plausible that better results would have been
obtained with these. Finally, biomechanical constraints could
be introduced more explicitly as a means of providing prior
knowledge to guide this analysis. We intend to investigate
these possibilities in future work.
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