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Abstract— Deep brain stimulation (DBS) is a neurosurgical
method used to treat symptoms of movement disorders by
implanting electrodes in deep brain areas. Often, the DBS
modeling approaches found in the literature assume a quasi-
static approximation, and discard any dynamic behavior. Never-
theless, in a real DBS system the stimulus corresponds to a wave
that changes as a function of time. It is clear that DBS demands
an approach that takes into account the time-varying behavior
of the input stimulus. In this work, we present a novel latent
force model for describing the dynamic electric propagation
occurred during DBS. The performance of the proposed model
was studied by simulations under different conditions. The
results show that our approach is able to take into account the
time variations of the source and the produced field. Moreover,
by restricting our model it is possible to obtain solutions
for electrostatic formulations, here experimental results were
compared with the finite element method. Additionally, our
approach allows a solution to the inverse problem, which is a
valuable clinical application allowing the appropriate tuning of
the DBS device by the expert physician.

I. INTRODUCTION

Parkinson’s disease is a progressive disorder of the ner-
vous system marked by tremor, muscular rigidity, and slow,
imprecise movement, affecting mainly middle-aged and el-
derly people. It is associated with degeneration of the basal
ganglia of the brain and a deficiency of the neurotransmit-
ter dopamine. On the other hand, deep brain stimulation
(DBS) is a neurosurgical method used to treat symptoms
of movement disorders by implanting stimulation electrodes
in deep brain areas [1]. The clinical successes of DBS
have prompted the development of continuously improving
scientific techniques to quantify its effects on the nervous
system, as well as to provide clinical guidance on the most
efficacious electrical parameters for stimulation [2].

Although the method has become a common procedure
in many clinical fields like Parkinson’s disease, essential
tremor, and dystonia, the fundamental mechanisms of DBS
remain uncertain [3]. In order to enhance the knowledge
about DBS performance and to avoid collateral effects of
the treatment, in the last decade many models for predicting
the electrical behavior induced by DBS were developed. A
suitable stimulation protocol involves not only the accurate
placement of the electrode inside the brain, but also the
proper configuration of some electrical parameters (pulse
width, frequency and the voltage amplitude) for the DBS
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device. More realistic predictions require reproducing as
accurate as possible the medium characteristics and the DBS
device behavior.

In order to model the electrical behavior of the deep
brain stimulation some constraints are imposed. Often, in the
literature, static (or quasi-static) conditions are assumed: the
system is governed by the Poisson’s or the Laplace’s equation
[4]–[6]. Additionally, a realistic geometry of the head is
needed for a rigorous representation of the phenomenon,
which generates a huge amount of degrees of freedom. A
common alternative is to use numerical techniques as the
finite element method (FEM) or the finite difference method
(FDM) to compute the electric field generated by the DBS.
However, in these models, the electric source is represented
as a perfect voltage (or current) and its dynamic behavior
is discarded, and their effects are ignored. Generally, in a
real DBS system, the stimulus waveform corresponds to an
square wave train, that is, the stimulus wave changes as a
function of the time, which can not be considered by the
mentioned methods. The errors induced by this assumption
may be significant in the context of brain simulation, where
1mm changes in the spread of activation can have dramatic
consequences on the therapeutic effects induced by the
stimulation [7].

To account for the dynamics in the electric propagation, a
Fourier finite element method (Fourier FEM) was proposed
in [7]. The method involves the solution of the Poisson’s
equation at frequency components to calculate the potential
distribution in the tissue medium as a function of the time
and space simultaneously for a range of stimulus waveforms.
Nevertheless, the Fourier FEM solves for steady state solu-
tions and does not model transients, that is, the effects of the
wave propagation are neglected. The results presented in [10]
give rise to the conclusion that the quasi-static approximation
is valid, however their analysis was done for an infinite
domain.

It is clear that the deep brain stimulation demands the
study of a dynamical problem, i.e. an approach that takes
into account the time-varying behavior of the input stimulus
is required. In this work we aim to design and implement
a novel latent force model for describing the dynamical
electric propagation occurred during deep brain stimulation
using Gaussian processes (GP) [8], that takes into account
the time variations of the source and the produced field.
The main goal is to solve a partial differential equation
subject to some boundary constraints (geometry) by using
Gaussian processes. In our case, the GP is represented
by random variables that correspond to: 1) the excitation
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source at any time and place, and 2) the value of the
electric potential at any place of the tissue medium at
any time. In particular, we are solving the inhomogeneous
wave equation. Our proposal is a general formulation of
the electric propagation problem. In fact, by restricting our
model it is possible to obtain the Laplace’s or Poisson’s
formulation. Additionally, our approach allows a forward
solution to the inverse electric propagation problem, that is,
defining the potential distribution it is possible to compute
the corresponding input stimulus (and its parameters), which
is a valuable clinical application allowing the appropriate
tuning of the DBS device by the expert physician.

II. MATERIALS AND METHODS

In this work we use a latent force model based on the wave
equation for describing the electric propagation in deep brain
stimulation. We are particularly interested in computing the
electric potential f , because once this quantity is calculated,
the electric field and the current density can also be obtained.
Furthermore, the volume of tissue activated (VTA) is related
to the double spatial derivative of the electric potential,
and the integration of the current density vector around the
electrode provides the total current [9].

A. Electric potential propagation modeling

Commonly, the electric potential distribution produced
during DBS is modeled using the Laplace’s [1] [5] [6], or
the Poisson’s [4] [7] [9] equation, under the assumption
that this quantity is a quasi-static field. The quasi-static
approximation neglects wave propagation effects and time
derivatives in Maxwell’s equations, limiting the models to
not take into account time variations [10]. This simplifies
the wave equation for the electrodynamic scalar potential f

∇
2 f − 1

c2
∂ 2 f
∂ t2 =−ρ

ε
, (1)

where f is the electric potential, c is the propagation velocity
of the electromagnetic wave, ρ denotes the electric space
charge density and ε the permittivity [11]. The quasi-static
approximation implies that the second partial derivative with
respect to time in (1) can be ignored [12], therefore the wave
equation reduces to the Poisson’s equation [10] [13],

∇
2 f =−ρ

ε
. (2)

Furthermore, if we consider no sources we get the Laplace’s
equation, ∇2 f = 0.

B. Latent force models using Gaussian processes

The general framework of the latent force models (LFM)
is to combine a mechanistic model with a probabilistic
prior over some latent function [14]. Here, the mechanistic
model corresponds to the wave equation (1), and the latent
function represents the source of excitation. We use Gaussian
processes for defining a probabilistic prior over the latent
function. Formally, a Gaussian process (GP) is a collection
of random variables, any finite number of which have a joint

Gaussian distribution [15]. The Gaussian process represents
the value of the excitation u(x, t) as well as the value of
the electric potential f (x, t), at location x at time t.1 We
assume that the latent function follows a Gaussian process
prior, with zero mean and covariance function ku,u(x, t,x′, t ′),
i.e. u(x, t) ∼ GP(0,ku,u(x, t,x′, t ′)). Due to the linearity of
the PDE used, its solution f (x, t) also corresponds to a
Gaussian process prior with zero mean and covariance
function k f , f (x, t,x, t ′). Furthermore, a covariance function
k f ,u(x, t,x′, t ′) between f and u can also be computed.

We are interested in getting the posterior distribution over
the function f , given an specific source of excitation u. This
is known as the direct problem. The posterior distribution
over f is given by [15],

f |u∼N
(

K f uK−1
uu u , K f f −K f uK−1

uu K>f u

)
, (3)

where K f f , K f u, and Ku,u are covariance matrices computed
from functions k f , f (·, ·), k f ,u(·, ·), and ku,u(·, ·), at particular
space points and time instants. We are also interested in the
inverse problem, i.e. the posterior distribution over the latent
force u, given an specific solution f ,

u| f ∼N
(

K>f uK−1
f f f , Kuu−K>f uK−1

f f K f u

)
. (4)

We apply latent force models for the direct and inverse
problems in deep brain stimulation. In this paper, we restrict
the solution domain to have two spatial dimensions x =
[x y]>.

C. A latent force model for the wave equation

Instead of using the quasi-static approximation, we use
the general expression for the second order nonhomogeneous
wave equation with two space variables in the rectangular
Cartesian system of coordinates

∂ 2 f
∂ t2 = a2

(
∂ 2 f
∂x2 +

∂ 2 f
∂y2

)
+u(x,y, t), (5)

where f (x,y, t) is the unknown function and represents the
electric potential, a is a constant coefficient and u(x,y, t) is
the excitation source. The exact solution to (5) is dependent
on specific boundary and initial conditions. For a boundary
value problem in a rectangle domain 0≤ x≤ l1, 0≤ y≤ l2,
with boundary conditions f (x= 0,y, t), f (x= l1,y, t), f (x,y=
0, t) and f (x,y= l2, t), and initial conditions f (x,y, t = 0) and
∂t f (x,y, t = 0), all equal to zero, the solution to the wave
equation is given by [16],

f (x,y, t) = S
t∫

0

l1∫
0

l2∫
0

u(ζ ,η ,τ)G(x,y,ζ ,η , t− τ)dηdζ dτ,

where S is the sensitivity, which accounts for the influence
of the latent force over the solution to the partial differential
equation. The Green’s function G(x,y,ζ ,η , t) is [16]

∞

∑
n=1

∞

∑
m=1

4sin(pnx)sin(qmy)sin(pnζ )sin(qmη)sin(aλnmt)
al1l2λnm

,

1Location x∈RD, with D= 1,2 or 3 in rectangular Cartesian coordinates.
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where pn = nπ/l1, qm = mπ/l2, and λnm =
√

p2
n +q2

m. We
assume that the excitation u(x,y, t) is a Gaussian process with
covariance function ku,u(x,y, t,x′,y′, t ′) defined as

e

(
−(t−t′)2

σ2
t

)
e

(
−(x−x′)2

σ2x

)
e

(
−(y−y′)2

σ2y

)
, (6)

where σt represents the length-scale of the time input vari-
able, σx and σy represent the length-scale along the x and y
spatial input variables, respectively. Since (5) is linear, then
the solution f (x,y, t) is also a Gaussian process with zero
mean and covariance function k f , f (x,y, t,x′,y′, t ′), given by(

4
al1l2

)2

∑
∀n

∑
∀m

∑
∀n′

∑
∀m′

SS′kt
f , f (t, t

′)kx
f , f (x,x

′)ky
f , f (y,y

′)

λnmλn′m′
(7)

where kx
f , f (x,x

′), ky
f , f (y,y

′) and kt
f , f (t, t

′) are kernel functions
dependent on the indexes n, n′, m and m′. Finally, the cross
covariance k f ,u(x,y, t,x′,y′, t ′) between the solution f (x,y, t)
and the excitation u(x,y, t) is defined by

4
l1l2

∑
∀n

∑
∀m

kt
f ,u(t, t

′)kx
f ,u(x,x

′)ky
f ,u(y,y

′). (8)

Solutions for the kernels in (7) and (8) can be obtained
analytically. Particular expressions are not included due to
space constrains.

III. RESULTS AND DISCUSSION

The proposed latent force model based on the wave
equation (see section II-C) was evaluated under different
circumstances. First, we highlight its dynamic properties
by calculating the posterior mean over the solution to the
wave equation (5), given a time varying source. Second,
we find the electric potential produced during deep brain
stimulation, using the presented model in a direct problem
approach (3). We also compare our outcomes with the
electric potential obtained by solving the Poisson equation
through the finite element method (FEM). Finally, we show
a simulation example where the proposed latent force model
is used to solve the inverse model (4), i.e. to find the source
of excitation that produced a prescribed electric potential.

In sections III-B and III-C the results obtained by the pro-
posed model are compared with the finite element method.
The data set used for these experiments come from coding
the solution to the Poisson equation through the Python
library FEniCS; a FEM based tool for solving partial dif-
ferential equations. See [17] for electromagnetic problems
solved using FEniCS. The problem specifications were: an
uniform mesh of 30× 30 points over a rectangle domain
with size 10cm× 10cm, and all boundary conditions equal
to zero. For the LFM, the values of the length-scales of the
latent force covariance function (6) were tuned manually.

A. Time-varying source

We use a time-varying source u to illustrate the dynamic
performance of the wave latent force model. Figures 1(a),
1(c) and 1(e) show the source u for the time instants
(seconds) [0.5, 0.55, 0.6], respectively. The posterior mean
over the solution f (x,y, t) to the wave equation (5), for

the same time instants, was obtained by (3), as shown in
Figures 1(b), 1(d) and 1(f). Here, the source was of the
form u = A(x,y)B(t), where B(t) = sin(9πt/5) and the term
A(x,y) is defined as a Gaussian distribution with mean
µµµ = [0.75, 0.3]>, and an spherical covariance matrix with
variance σ2 = 0.02.
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Fig. 1. (a), (c), (e), Illustration of a time-varying source of excitation
u at instants (seconds) [0.5, 0.55, 0.6], respectively. (b), (d), (f) Mean
of the posterior distribution over the solution f at instants (seconds)
[0.5, 0.55, 0.6], respectively.

B. Direct problem: simulation of deep brain stimulation
In the previous subsection we considered a dynamic source

u which results in a posterior over the solution f that also
varies in time. We now apply the model in the case where u
is static, within the framework of deep brain stimulation.
Here, u represents a current source fixed to 1 mA. The
source has the form of a piecewise function, defined as
u(x,y, t) = 1× 10−3 at the electrode contact location, and
u(x,y, t) = 0 elsewhere. Fig. 2(a) shows the corresponding
electric potential, calculated using FEM for solving the
Poisson equation (2). The posterior mean over the electric
potential, obtained through (3) using the latent force model
approach (Fig. 2(b)), showed high similarity in shape as
well as in magnitude compared with the FEM solution. The
quadratic mean error between the results obtained with both
methods was 3.3813×10−21.
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Fig. 2. (a) Electric potential obtained by FEM. (b) Electric potential
posterior mean obtained by LFM. (c) Original source to be recovered in
the inverse problem. (d) Posterior mean for the source obtained using LFM.

C. Inverse problem: Electrostatic field

So far, we have analyzed the direct problem (3). Specifi-
cally, situations where we have knowledge about the source
u, and wish to found the solution f to the wave equation.
The proposed model can also be used for solving the inverse
problem, i.e. to recover the source that produced an specific
electric potential. To do so, we use FEM to obtain the electric
potential generated by the charge density showed in Fig. 2(c),
and take these results as input data to the latent force model
in (4) to get a posterior distribution over the source u. A
similar example can be found in [18]. The posterior mean
over the recovered source (Fig. 2(d)) exhibited high similarity
to the original excitation. The quadratic mean error between
the original and recovered source was of 1.3574×10−04. The
variance over the recovered source computed using LFM,
as well as the electric potential used as input data, are not
showed here due to space limitations.

IV. CONCLUSIONS

In this paper, we have presented a novel latent force
model for describing electric sources and fields, within the
framework of deep brain stimulation. We used the partial
differential wave equation and Gaussian process priors to
model the electric potential as well as its source. The results
show that the proposed method can model dynamic electric
potentials and sources, as well as electrostatic problems.
The electric potential calculated with the latent force model
proved to be close to the potential obtained by solving the
Poisson equation using the finite element method. Besides,
the results show that the inverse problem can be addressed
using the proposed model. The latent force model presented
in this paper could be extended to make use of more realistic
domains, taking into account three spatial dimensions instead

of two, and allowing heterogeneous and anisotropic domain
properties. Additionally, different boundary and initial condi-
tions can be analyzed. Finally, a partial differential equation
that considers the wave propagation in lossy materials might
also be considered.
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