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Abstract— Postoperative Acute Respiratory Failure (ARF)
is a serious complication in critical care affecting patient
morbidity and mortality. In this paper we investigate a novel
approach to predicting ARF in critically ill patients. We
study the use of two disparate sources of information – semi-
structured text contained in nursing notes and investigative
reports that are regularly recorded and the respiration rate,
a physiological signal that is continuously monitored during a
patient’s ICU stay. Unlike previous works that retrospectively
analyze complications, we exclude discharge summaries from
our analysis envisaging a real time system that predicts ARF
during the ICU stay.

Our experiments, on more than 800 patient records from
the MIMIC II database, demonstrate that text sources within
the ICU contain strong signals for distinguishing between
patients who are at risk for ARF from those who are not at
risk. These results suggest that large scale systems using both
structured and unstructured data recorded in critical care can
be effectively used to predict complications, which in turn can
lead to preemptive care with potentially improved outcomes,
mortality rates and decreased length of stay and cost.

I. INTRODUCTION

Acute Respiratory Failure (ARF) is a serious postoperative
complication occurring in many patients. It occurs when the
respiratory system fails in oxygenation and/or CO2 elim-
ination. Like other postoperative complications it worsens
patient outcome and mortality and often prolongs hospital
stays leading to increased costs.

Critical care units are data-rich environments where mul-
tiple parameters of patients are continuously monitored. Two
important sources of patient information include physiolog-
ical signals (or vital signs) that are measured in bedside
monitors and various text sources that are regularly recorded
such as nursing notes, reports from radiology, biochem-
istry and other investigations. While risk factors for many
complications, including ARF, have been studied earlier,
automated systems that can predict ARF using text sources
and/or physiological signals in critical care have not been
investigated, to the best of our knowledge. We take the first
step in this direction of using machine learning techniques
to analyze nursing notes and vital signs to predict ARF.
The novelty of our system lies in the fact that we use only
nursing notes and investigative reports during the patient’s
ICU (Intensive Care Unit) stay to predict the risk of ARF.
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Discharge summaries1 are intentionally excluded from our
analysis since they are written at the end of the patient’s stay
and cannot be used in a real-time prediction system within
the ICU. This also makes the problem harder since discharge
summaries contain comprehensive information of patients’
past and current medical history which nursing notes lack.
Discharge summaries are formal documents and systems
analyzing them (using linguistic techniques) rely on their
grammatical structure. In comparison nursing notes are in-
formally written and contain nonstandard and inconsistently
used abbreviations.

We also evaluate the predictive performance when features
obtained from these textual sources are combined with
statistical features from respiration rate. Our experiments
show that text sources contain sufficient statistical signal to
distinguish between postoperative patients who develop ARF
and those who do not develop ARF.

A. Respiratory Failure: Incidence and Risk Factors

Postoperative Acute Respiratory Failure is most commonly
defined as the inability to be extubated 48 hours after surgery
[3]. It occurs postoperatively in about 3% of all surgical
cases and death within 30 days occurs in nearly 26% of the
cases [8]. Incidence and mortality rates have been found to
be similar in multiple studies across USA and surprisingly,
there has been no change in the rates over the last 10 years
[8].

Khuri et al. [13] show that ARF is an independent predic-
tor of mortality and Dimick et al. [4] have studied the large
cost and length of stay associated with ARF. A predictive
model for ARF can hence also be utilized in predictive
systems for mortality, cost and length of stay.

Risk factors for postoperative respiratory failure have been
studied by several authors and can be divided into patient-
specific and operation-specific factors. Patient-specific risk
factors include health status (e.g. age, body-mass index),
functional status, pulmonary status (including smoking),
neurologic status, cardiac status, renal and fluid status and
operation-specific risk factors include location of surgery and
type of anesthesia used [1]. Various authors have investi-
gated the risk of ARF in specific procedures such as liver
transplantation [11], blood transfusion [5], head and neck
surgeries [14] and abdominal surgery [2].

1A discharge summary is a report written at the end of a patient’s stay
in the hospital. It typically includes details of the patient, the healthcare
professionals involved during the stay, diagnoses, investigations and com-
plications during the stay, past medical conditions as well as present and
future treatment plans.
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Fig. 1. Sample de-identified nursing notes from an ICU

B. Predictive Text Analytics in Healthcare

Many companies have developed experimental systems
that can use heterogeneous electronic sources of data avail-
able in hospitals and provide predictive analytics services
such as identifying patients at risk for diseases, treatment
planning, and hospital resource management. Some well
known examples include IBM’s ICDA, a platform for in-
telligent care delivery analytics [7] and MatrixFlow, for
analysis of disease progression using clinical event sequences
[17]. These generic platforms have not been evaluated for
complication prediction within ICUs.

Studies have illustrated the advantages of using (predic-
tive) text analytics in healthcare. Hripcsak et al. [10] demon-
strate that text analytics can detect clinical conditions in chest
X-rays with a consistency that is indistinguishable from that
of physicians reviewing the same reports. A recent study by
Murff et al. [9] explores the use of text analytics to predict
several postoperative complications. The predictive accuracy
ranges from 64% for pneumonia to 91% for myocardial
infarction. Source documents for the study include nursing
notes, reports and discharge summaries.

None of these studies specifically investigate respiratory
failure. Further, most of these studies use discharge notes
in the text corpus for retrospective studies. Discharge sum-
maries are written at the end of the patient’s stay and
cannot be used in a real-time predictive system. Predictive
models for postoperative ARF have been designed based
on preoperative clinical and demographic factors by several
authors [8], [12], [15]. But no previous work has investigated
the use of nursing notes and investigative reports during the
patient’s stay to predict ARF and we take the first step in
this direction. We are also unaware of any previous work
that combines text sources and physiological signals for
complication prediction in ICUs.

II. PREDICTING ACUTE RESPIRATORY FAILURE

The task of predicting ARF can be framed as a supervised
classification task: using past cases from two classes A (those
who develop ARF during their ICU stay) and B (those who
do not), train a classifier that can distinguish between the
two classes. The classifier can be used to predict the class
label of a new patient based on his/her data. If the predicted
label is A, the patient is considered to be at risk for ARF.

III. DATA

The source of our data is MIMIC II [18], a publicly
available database, part of Physionet [6], containing physio-
logical signals and clinical data of more than 2300 patients

in Critical Care. We restrict our study to those patients in the
database for whom vital signs (physiological signals such as
Respiration Rate, Blood Pressure etc. recorded by bedside
monitors) have been provided. From this set, we extract
the data of patients with postoperative respiratory failure,
identified by ICD9 code 518.5.

We construct two datasets: in the first dataset we do
not exclude any surgeries, thus the data contains samples
from different kinds of surgeries. This dataset contains 122
patients from class A (those with ARF) and 684 patients from
class B (those without ARF): a total of 806 patients. In the
second dataset, we include only patients who have undergone
coronary bypass surgery (procedure codes 3611–3614). This
dataset contains 22 patients from class A (those with ARF)
and 30 patients from class B (those without ARF): a total of
52 patients. We will refer to these datasets as dataset I and
II respectively.

IV. TEXT PREPROCESSING AND FEATURE EXTRACTION

Observing the text data, we notice that the data is not com-
pletely unstructured but is structured into various headings
such as “NEURO”, “PULM” etc. See figure 1 for an exam-
ple. These headings are neither consistent nor unique; for
example, “CARDIO” is also written as “CV” and “CARD”
in some notes. The key idea of our preprocessing method
lies in realizing that the importance of a word or phrase
in the text, in the context of a complication, is relative to
the heading within which it resides. The significance of the
same word differs when it is under the heading “PULM”
than when it is under “NEURO”. Hence, we extract features
for each heading separately and assign an importance value
to each word based on its frequency of occurrence in the
training data. Only a fixed percentage of the extracted words
are used in further preprocessing of the text. The complete
sequence of steps performed is listed below. We denote
by text observation all the text data for a single patient
concatenated together which includes nursing notes and
investigative reports of a patient but excludes the discharge
summary.

• Extract all the headings from all text observations using
predefined rules that identify headings. For example, a
word in the beginning of a sentence, followed by colon
is considered a heading.

• Eliminate headings and regroup data. Since headings are
not consistently provided in the text, several different
headings could in reality refer to the same word (exam-
ple ‘CARDIO’, ‘CV’ and ‘CARD’ all refer to the same
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heading). A dictionary of such “synonyms” are created
to map synonymous headings together.

• Words within the same heading are processed together
for each text observation. Stemming, stop word removal
and punctuation removal are performed to obtain a
list of stem words under each heading (for each text
observation).

• Let nw(C,H) be the number of text observations from
class C wherein the word w occurs under heading H .
The importance of a word is computed as Iw(H) =
nw(A,H)−nw(B,H) for classes A and B. Thus words
that are more frequent in class A are positive and those
for class B are negative and the importance value is
an approximate measure of the word’s discriminatory
power.

• For each heading H , we sort the words with respect
to their importance values Iw(H), select the top and
bottom 5% (thus selecting from both the most negative
and most positive values), and discard the rest. Within
each heading, each of these words forms a feature and
the number of occurrences of the word within a text
observation is the feature value. A patient’s data consists
of a feature vector containing all the feature values (for
all the headings).

With these preprocessing steps we obtain 6413 features in
dataset I and 4662 features in dataset II.

V. EXPERIMENTAL RESULTS

Three standard classifiers are used in our experiments:
Support Vector Machine (SVM), Logistic Regression (LR)
and Random Forest (RF). All implementations are in python
using the scikit package [16]. Default parameter settings are
used except for the option that adjusts for class imbalance.
To evaluate the classification performance, we perform leave-
one-out cross validation: for a dataset of n samples, n runs
are executed for n distinct choices of test samples – the
classifier is trained on the remaining n−1 samples and tested
on the single chosen test sample. We use three performance
metrics: accuracy, sensitivity and specificity. Accuracy is
defined as the proportion of the total test samples in which a
classifier accurately predicted the class. Sensitivity is defined
as the proportion of the total samples from class A that are
correctly identified as belonging to class A. Specificity is
defined as the proportion of the total samples from class B
that are correctly identified as belonging to class B. We test
two settings. First, only features from text data are used. In
the second setting, from the respiration rate (RR) we extract
the mean and coefficient of variation for each patient and
concatenate these two features with the text features (by
adding extra columns to the text feature value matrix).

Figure 2 shows the accuracy, sensitivity and specificity
values obtained (the values are averaged over the 806 cross
validation runs) using text data alone and when RR is
concatenated to the text data in dataset I. We note that
both Logistic Regression and Random Forest obtain above
80% accuracy in classification. The addition of RR does
not affect the performance of the classifiers significantly.

Fig. 2. Classifier performance: accuracy (above), sensitivity (middle) and
specificity (below) in two scenarios, using text features alone and using text
features with mean respiration rate (RR) in dataset I. Values are averages
obtained over 806 leave-one-out cross-validation runs. 3 classifiers used
– RF: Random Forest, LR: Logistic Regression, SVM: Support Vector
Machine.

The specificity values are higher than sensitivity due to the
unbalanced classes used in training the classifier. With more
training samples from class B, we expect the sensitivity
values as well as the total accuracy to increase. The accuracy
remains close to 85% when only 25 features are used after
transforming the dataset using PCA.

Figure 3 shows the results for dataset II. We observe
that using text features alone the highest accuracy obtained
is 92% with 81% sensitivity and 100% specificity (using
SVM). On a dataset of 25 features, obtained through PCA,
the performance is of the same order: 96% accuracy, 90%
sensitivity and 100% specificity. The performance of any of
the classifiers does not deteriorate on combining the features
from text data and respiration rate. These experiments also
suggest that it may be more valuable to build models for
specific complications that are restricted to specific pa-
tients groups (in this case, patients who underwent cardiac
surgery).
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Fig. 3. Classifier performance: accuracy (above), sensitivity (middle) and
specificity (below) in two scenarios, using text features alone and using text
features with mean respiration rate (RR) in dataset II. Values are averages
obtained over 52 leave-one-out cross-validation runs. 3 classifiers used – RF:
Random Forest, LR: Logistic Regression, SVM: Support Vector Machine.

VI. CONCLUSION

We present a novel approach to predict postoperative acute
respiratory failure (ARF) using text sources of information
commonly available in ICUs. We also evaluate the perfor-
mance when these are combined with features derived from
vital signs such as respiration rate. Our experiments strongly
suggest that nursing notes contain sufficient statistical signal
to distinguish between postoperative patients who develop
ARF and those who do not develop ARF. In the future we
would like to explore dimensionality reduction techniques
and data fusion techniques for combining heterogeneous
sources of data – text and physiological signals, to improve
upon our preliminary results. We believe that text sources
within ICU can be powerful sources for building analytics
tools for predicting complications like Respiratory Failure.
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