
  

  

Abstract— Potentially preventable hospital readmissions 
have a crippling effect on the health of chronic disease patients 
and on healthcare funding and resource utilization. While 
several prediction models have been proposed to help identify 
and manage high risk patients, most offer only moderate 
predictive power and discriminative ability. We develop and 
validate several models that utilize cohort population and 
clinical data and are capable of precisely identifying chronic 
disease patients with a high risk of rehospitalization within 30 
days. Cross validation and receiver operating characteristic 
curve analysis are used to examine the predictive power of the 
models. The developed models offer high precision and 
discrimination and outperform current state of the art models. 
Delivering between 73% and 79% sensitivity at 93% specificity, 
the models offer excellent candidate prediction algorithms for 
the battle against the burden of chronic disease on the public 
health system. 

I. INTRODUCTION 

Unplanned hospital readmissions, especially in chronic 
disease patients, are credited with being responsible for a 
significant portion of health spending in most countries 
around the world [1-2]. With statistics suggesting that 90% 
of 30-day rehospitalizations are unplanned, and that 20%-
50% of these are preventable [3], reducing potentially 
preventable readmissions is well regarded as an efficient 
strategy for reducing cost and hospital workload, and 
importantly, improving the quality of patient care. Recent 
efforts to measure readmission rates and penalize hospitals 
based on these [4-5] have further motivated hospital services 
to identify patients at high risk of readmission early during 
their admission to enable planning of appropriate 
interventions as part of the discharge planning process.  

Several models have been proposed over recent years for 
predicting the risk of hospital readmission [6-12]. A recent 
comprehensive survey of these risk prediction models [12] 
found that while useful, most current models performed 
poorly and greater efforts were needed to improve their 
efficacy. More specifically, current models were found to 
have poor or moderate predictive and discriminative ability. 
Further, while several intervention programs have been 
proposed to help reduce unplanned readmissions, it has been 
shown that no single intervention implemented alone 
contributes significantly to reductions in 30-day readmission 
rates [13]. The impact of these interventions will no doubt be 
improved if a robust model offering high predictive power is 
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available for selecting candidates for referral to the program. 
Our study is aimed towards filling this void.  

With high precision and discriminative ability as primary 
objectives, we use administrative and clinical information for 
patients belonging to a lower socio-economic region of 
Queensland, Australia, to develop and validate prediction 
models for identifying chronic disease patients with a high 
risk of readmission within 30 days of discharge from 
hospital. We independently validate our models and compare 
the performance with the LACE index, proposed by van 
Walraven et al [7]. We also discuss the proposed integration 
of these models into a hospital trial, generating daily lists of 
high-risk patients to proactively inform and support 
discharge planning and community interventions aimed at 
reducing potentially preventable readmissions of chronic 
disease patients. 

II. METHODS 

Inpatient admission and emergency presentation data 
from 2005-2010 for patients residing in a lower socio-
economic area of Queensland, Australia, was obtained from 
all 4 public hospitals within the catchment health district. 
Ethics approval for this research was obtained from the 
Queensland Health Metro South Health Services District. 
Microsoft Excel 2007 and Matlab 7.13.0 were employed for 
data manipulation and statistical analysis. 

TABLE I.  LIST OF ICD-10 DIAGNOSIS CODES USED TO IDENTIFY 
CHRONIC DISEASE PATIENTS FOR THE STUDY 

Diagnosis Code Block Description 
E11* Type 2 Diabetes Mellitus 
I25* Chronic Ischaemic Heart Disease 
I50* Heart Failure 
I60* Subarachnoid Haemorhage 
I61* Intracerebral Haemorrhage 
I62* Other Nontraumatic Intracranial Haemorrhae 
I63* Cereral Infarction 
I64* Stroke, Not Specified as Haemorrhage or Infarction 
J44* Other Chronic Obstructive Pulmonary Disease 
J45* Asthma 
J46* Status Asthmaticus 
N18* Chronic Kidney Failure 
Z49* Care Involving Dialysis 

 
The collected data was cleaned by removal of 

incomplete/inconsistent records. The study focused on the 
patient cohort that had at least one chronic disease admission 
(identified by ICD-10 diagnosis codes, see Table I) during 
the analysis period. A large proportion of admissions 
consisted of planned dialysis. To reduce the potential bias 
caused by these, patients with only planned dialysis were 
removed from the cohort. All inpatient admissions (including 
dialysis admissions, if any) were included for the remaining 
patients in the cohort. The resulting dataset comprised 67302 
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encounters representing admissions between 2005 and 2009 
which were used to build the model, and 14456 encounters 
representing admissions in 2010 which were used for 
independent validation.  

TABLE II.  VARIABLES AVAILABLE AS PREDICTORS  

Visit Number Top Ten ICD Code - E11 Account (Billing) Class 
Length of Stay Top Ten ICD Code - I10  ICD Code 1 
Previous Length of Stay Top Ten ICD Code - I25 ICD Code 2 
Chronic Disease Admission ?  Top Ten ICD Code - Z86 Number of ICDs 
Age Top Ten ICD Code - Y92 Charlson Comorbidity Index 
Sex Top Ten ICD Code - E78  Number of Interventions 
Marital Status Top Ten ICD Code - N18 ED Visits - Last 30 Days 
Admit Unit Top Ten ICD Code - J44  ED Visits - Last 60 Days 
Country of Birth Top Ten ICD Code - I50  ED Visits - Last 90 Days 
Planned Same Day Admission? Top Ten ICD Code - Z72 ED Visits - Last 120 Days 
Insurance Status Ethnic Status ED Visits - Last 365 Days 
Admit Type 
(Elective/Emergent) 

Return Time (from 
Previous visit) 

Disease Related Group 
(DRG) 

Medicare Status   

 

Table II presents the list of predictors that were used for 
the analysis. The time taken for each encounter to result in a 
subsequent encounter (Time-to-Return) was recorded and 
used as a response variable for modeling and validation. As 
Time-to-Return exhibited a lognormal distribution, raw 
values were log-transformed prior to analysis. For Time-to-
Return, 30 days was chosen as the benchmark for identifying 
unplanned readmission as it is well regarded as the optimal 
choice for the purpose [16-18], and is also employed by the 
metrics used for evaluating and comparing hospital 
performance [4-5].  

A filtered training data set was created from the initial 
training sample by excluding index admissions (i.e. first 
admission) during the data collection period. Both unfiltered 
and filtered training datasets were employed for modeling to 
study if removal of index admissions (i.e. admissions with 
null values for variables dependant on previous visits like 
Return Time, Previous Length of Stay etc.) improved the 
prediction model, and whether the risk of readmission could 
be predicted for patients during their first visit based on 
available variables (e.g. Age, Sex, Marital Status, etc).  

Stepwise multiple linear regression was used to identify 
significant subsets of variables on the filtered and unfiltered 
datasets. Significance value cutoffs of p=0.05 and 0.10 were 
employed as thresholds for inclusion and removal of 
variables from the stepwise model respectively. Robust 
regression and Ordinary Least Squares (OLS) regression 
were employed for building models on the significant subset 
of variables identified. Robust regression was chosen as it 
allows the model to better handle outliers, i.e. data points 
that deviate markedly from the rest of the data.  

Each of the four developed models was validated on 
filtered (index admissions removed) and unfiltered versions 
of the evaluation dataset. Variable thresholding was 
undertaken during validation to convert the score to a binary 
value representing the prediction for whether the encounter 
would result in a return admission within 30 days. This was 
then compared to the observed (validation) value to verify if 
the prediction was successful or not. Sensitivity, specificity, 
accuracy and precision were calculated for each encounter 
and the Receiver Operator Characteristic (ROC) graph was 

generated for each evaluation. The c-statistic, representing 
the area under the ROC curve, was then calculated for each 
model as a measure of discrimination and used to compare 
the performance of the models. An optimal threshold, T1, 
was then chosen for model use and comparison, and 
sensitivity, specificity, precision and accuracy were 
calculated at threshold T1 for each model. 

For comparison, the LACE index [7] was also used to 
predict the risk of readmission within 30 days on filtered and 
unfiltered versions of the evaluation dataset. The index was 
chosen because it could be readily applied to the variable set 
used in this study. Sensitivity, specificity, accuracy and 
precision were calculated at each index score and the ROC 
curve was plotted and analyzed to compare the performance 
of the LACE index with our models. 

Correctly and incorrectly predicted encounters were also 
analyzed for a qualitative understanding of performance and 
discriminative ability of the index.  

III. RESULTS 

Stepwise selection revealed that filtering out the index 
admissions did not have any impact on the selection of 
significant variables. Both, the complete and the filtered 
training sets, returned the same 19 significant variables in the 
stepwise selection (see Table III).  

TABLE III.  SIGNIFICANT PREDICTORS RETURNED BY THE STEPWISE 
MULTIPLE LINEAR REGRESSION ALGORITHM 

Visit Number Top Ten ICD Code - E78  
Length of Stay Top Ten ICD Code - N18 
Return Time (from Previous Visit) Top Ten ICD Code - J44  
Age Top Ten ICD Code - Z72 
Sex Ethnic Status 
Marital Status Account (Billing) Class 
Admit Unit Charlson Comorbidity Index 
Planned Same Day Admission? Number of Interventions 
Insurance Status ED Visits - Last 120 Days 
Top Ten ICD Code - Z86 ?  

 

Figure 1 presents the ROC curves for the performance of 
all four models on filtered and unfiltered validation datasets. 
It was observed that ROC curves nearly overlapped across 
all models, with robust regression models marginally 
outperforming OLS regression models. The performance of 
the models can broadly be divided into categories – models 
developed using robust regression, i.e. models m1, m2 and 
models developed using OLS regression, i.e. models m3, m4. 

The overall performance of all models was high, with all 
models achieving over 90% area under the curve in the ROC 
analysis (see c-statistic, Table IV). Table IV also provides a 
comparison of sensitivity, specificity, accuracy and precision 
levels at the chosen threshold level T1 (i.e. 93% specificity). 
At this level, models developed using robust regression 
reported over 78% sensitivity, 84% accuracy, and over 94% 
precision. In contrast, models developed using OLS 
regression reported 73% sensitivity, 81% accuracy, and 94% 
precision. No significant improvement was found in models 
that used the filtered training dataset. 
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Figure 1.  Receiver Operator Characteristic Curve for Developed Models 

In comparison, the LACE index [7] applied to our data 
resulted in lower performance for predicting the risk of 
readmission within 30 days. Validation over the filtered 
dataset returned only marginal improvement as compared to 
the unfiltered dataset. In both cases however, the area under 
the ROC curve for the LACE index was under 20%, and 
sensitivity over 50% could only be achieved at the cost of 
under 9% specificity and 48% positive predictive power. 
Inverting the ROC curve (see Figure 2) returned 80% area 
under the curve with 81% sensitivity at 73% specificity and 
82% precision for unfiltered data and 82% sensitivity at 71% 
specificity and 83% precision for filtered data respectively.  

Analysis showed that most of the significant variables 
were common to those reported by other algorithms. 
Analysis of the correctly and incorrectly predicted 
encounters revealed that several Chronic Disease patients 
also had Dialysis admissions during the reference period. 
The main outcome measure (30 day readmissions) was 
accurately predicted for patients within this group. 

IV. DISCUSSION 

The key contribution of this study is the development and 
validation of precise predictive models for identifying 
chronic disease patients with a high-risk of 30 day 
rehospitalization. It is intended that the chosen model will be 
used to identify patients while in hospital so appropriate 
interventions can be incorporated in their discharge planning.  

Employing a mix of administrative and clinical data, the 
predictors represent a good mix of parameters that can be 
easily accessed from existing information systems without 
requiring additional input from clinical staff. This overcomes 
ad-hoc approaches employed by some intervention models 
and equips clinical staff with a consistent and reliable 
mechanism for risk stratification.  

The ROC analysis reveals that the performance of the 
models is not affected by some missing predictors in the 
evaluated admission. Interestingly, one of these predictors, 
Return Time, representing the time between the previous and 
current hospital admission episodes, was still selected as a 
significant variable in the stepwise fit. 

Figure 2.  Inverted Receiver Operator Characteristic Curve for LACE 
Index [7] 

The prediction models proposed herein significantly 
outperform the LACE index. And while van Walraven et. al. 
have stated that the LACE index was specifically designed 
for the test population on which it was evaluated and may not 
have general applicability, the performance of our models 
exceeds the performance of the index as reported in the 
original study. It would however be interesting to evaluate 
the performance of the LACE score as a predictor in future 
models. 

The performance of our risk prediction models is also 
higher than that reported by validation studies on PARR [6] 
and other models reviewed by Kansagara et. al. [12]. 
Achieving up to 79% sensitivity at 93% specificity, our 
prediction models are suitable candidates for identifying 
high-risk patients for community interventions as planned. 
Further, offering a very low false positive rate with up to 
95% precision, the models are well suited for use where 
budget constraints require precise prediction to ensure 
resources are targeted to patients that need them the most. 
Use of the filtered training data delivered identical 
performance to the complete dataset, delivering a limited set 
of variables that could be used with ease for risk 
stratification algorithms.  

V. CONCLUSION 
We have developed and validated prediction models for 

identifying chronic disease patients that are at high risk of 
rehospitalisation within 30 days of discharge. The developed 
models exhibit high sensitivity at high specificity levels, and 
higher predictive power and discrimination ability compared 
to current state of the art prediction models. These 
characteristics can help target interventions towards where 
they are most needed and help prevent avoidable 
readmissions to hospitals.  

We are currently working towards initiating a trial of the 
models to identify candidates for a discharge planning and 
community intervention program targeted at reducing 
potentially preventable readmissions for chronic disease 
patients. We are also working towards incorporating 
information from outpatient, pharmacy, and community 
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TABLE IV.   PERFORMANCE OF PREDICTION MODELS AT THRESHOLD T1 (I.E. 93% SPECIFICITY). 

Model Training 
Dataset Validation Dataset Sensitivity Specificity Accuracy Precision c-statistic 

m1* Unfiltered Unfiltered 78% 93% 84% 94% 0.909 
Filtered 78% 93% 84% 94% 0.909 

m2* Filtered Unfiltered 79% 93% 84% 95% 0.914 
Filtered 79% 93% 84% 95% 0.914 

m3# Unfiltered Unfiltered 73% 93% 81% 94% 0.902 
Filtered 73% 93% 81% 94% 0.902 

m4# Filtered Unfiltered 73% 93% 81% 94% 0.906 
Filtered 73% 93% 81% 94% 0.906 

Notes : * Denotes models employing robust regression, # Denotes models employing OLS regression. 

health information systems, and exploring more complex 
models to further improve predictive power. 

VI. LIMITATIONS 
Data was collected from all hospital services within a 

selected catchment area, and the study focused on patients 
primarily belonging to a specified lower socio-economic 
region in the state.  Further analysis needs to be undertaken 
before the models developed as part of this study can be 
applied outside this region. Also, the study was unable to 
account for patients that may have visited hospitals outside 
the catchment (e.g. interstate or overseas), or not returned 
because they died. Because of the planned use for the risk 
stratification algorithms, the model does not account for 
clinical and non-clinical indicators during the current visit 
when the model will be applied. The aim of preventing 
unplanned readmissions would benefit from research into 
how these indicators could be integrated into the process.  

We also stress that the models were derived from historic 
patient records which included dialysis episodes (we 
however did exclude patients with treatment comprising 
exclusively of planned dialysis).  Such episodes may be 
considered obvious in care planning, and care should be 
taken in comparing the performance of prediction algorithms 
that include this patient cohort.  
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