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Abstract— High dimensional functional MRI data in combi-
nation with a low temporal resolution imposes computational
limits on classical Granger Causality analyses with respect to
a large-scale representations of functional interactions in the
brain. To overcome these limitations and exploit information
inherent in resulting brain connectivity networks at the large
scale, we propose a multivariate Granger Causality approach
with embedded dimension reduction. Using this approach,
we computed binary connectivity networks from resting state
fMRI images and analyzed them with respect to network
module structure, which might be linked to distinct brain
regions with an increased density of particular interaction
patterns as compared to inter-module regions. As a proof of
concept, we show that the modular structure of these large-
scale connectivity networks can be recovered. These results are
promising since further analysis of large-scale brain network
partitions into modules might prove valuable for understanding
and tracing changes in brain connectivity at a more detailed
resolution level than before.

I. INTRODUCTION

Granger Causality approaches are frequently applied to
identify directed functional connectivity in neural time series
data [1]. However, it is restricted by the dimensionality of
the underlying time series. To overcome this limitation we
propose a fully multivariate Granger Causality approach with
embedded dimension reduction to compute highly resolved
brain functional connectivity networks that can be analyzed
with respect to topological segmentation. A long-term ob-
jective might be a full brain representation without any pre-
definition of ROIs or specific voxels. The identification and
clustering of network vertices with similar coupling patterns
within the network may be used for functional segmentation,
which can directly be projected onto neuroimaging data.
Consequently, we are interested in the tradeoff between
computing increasingly higher dimensional connectivity net-
works and the resulting loss of topological information as
shown by the quality of recovered network modules (network
communities).

Recently, the large-scale Granger Causality Index (lsGCI)
has been introduced as a possible means to quantify directed
information transfer in very high-dimensional systems [2].
The basic idea is the insertion of a dimension reduction into
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model estimation, which allows computation of prediction er-
rors in the original high-dimensional space. Here we examine
the effects of this procedure on network module structure by
means of several simulated time series and one exemplary
resting state fMRI data set.

II. MATERIAL

A. Ground truth networks with known module structure

To test the effect of dimension reduction on network
module structure and for comparing the lsGCI approach
with the conventional Granger Causality Index we simulated
binary directed ground truth (ad hoc) networks of size
D = 50 with known module structure. Given a predefined
number of modules and their sizes (two modules of size
12, two modules of size 13), vertices are selected and ac-
cordingly assigned membership to non-overlapping modules.
The edges connecting these vertices in the ground truth
networks are placed randomly under constraints that define a
notion of module structure. Edge patterns are constrained by
probabilities for internal edges (intra-module) and external
edges (inter-module) between all vertices and also additional
conditions on minimum internal and maximum external in-
and out-degrees have to hold true. The probability of con-
nections within each module was set to 0.7, the probability
of connections between vertices of different modules was
set to 0.02. The minimum internal in-degree of a vertex
specifies the lower bound for the number of its incoming
connections from member vertices of its assigned module.
In our simulations this parameter and the minimum number
of internal out-degrees were both set to 6. The maximum al-
lowed external in-degree of each vertex constitutes the upper
bound for the number of in-coming connections from vertices
of different modules. This parameter and the maximum
external out-degree were set to 4. Note that the constraints
on internal and external degrees do not entail a determination
of specific connection patterns between vertices. The ground
truth networks are obtained by combining the adjacency
matrix of a network that represents only the edges within
communities with another one that represents edges between
vertices of different communities (Fig. 1(a)). This splitting
of the problem makes the computations involved much more
tractable.

Based on the resulting adjacency matrices A ∈ {0, 1}D×D
we realized stationary first order multivariate autoregressive
(MVAR) processes Y(n) = B · Y(n − 1) + E(n) ∈ RD,
for n = 1, . . . , N , with zero mean, uncorrelated Gaussian
processes E(n). To ensure stationarity, the model parameters
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were set to bij = 0.99 · ρ · aji/η, where η is the maximum
column sum of A, and ρ is a uniformly distributed sign.

B. Resting state fMRI data

Functional MRI images of healthy subject were acquired
with a 3.0 T Siemens MAGNETOM Trio TIM scanner
(Siemens, Erlangen, Germany) with a standard birdcage head
coil. Resting state (EPI-BOLD) sequences were performed
with the following parameters: echo time (TE) - 30 ms,
echo-repetition time (TR) - 2s, and flip angle (FA) - 90
degrees. The acquisition lasted 6 minutes and 40 seconds
during which 200 volumes of functional data were acquired.
Each volume consisted of 30 axial slices with an in-plane
resolution of 4 mm x 4 mm. The inter-slice distance was
4mm. During the scan, the subject was instructed to stay
still and keep eyes closed.

To aid in localization and registration of functional data,
a high-resolution T1-weighted MPRAGE sequence was ac-
quired with the following parameters: TE - 3.44 ms, TR -
2.53 s and FA - 7 degrees. 192 slices were acquired in the
sagittal direction with an in-plane resolution of 1 mm x 1 mm
and a slice thickness of 1 mm. Functional MRI data was then
preprocessed using FSL v4.1.9. Data volumes were motion
corrected, brain extracted, temporally filtered with a high-
pass filter of cut-off frequency 0.005 Hz, and normalized to
MNI152 brain atlas.

To give a proof of principle of the proposed methodology,
we used one slice (slice number 10) for our analysis provid-
ing 1031 voxels associated to the brain. The MVAR model
order was set to 6, which reflects a compromise between
model simplicity and sufficient fit amongst FFT spectra and
corresponding parametric AR spectra.

III. METHODS

A. Large scale Granger Causality Index

A D-dimensional, p-th order MVAR process is given by
Y(n) =

∑p
r=1 B

rY(n − r) + E(n) ∈ RD, n = 1, . . . , N ,
with AR-parameters Br ∈ RD×D and a zero mean, uncor-
related noise process E(n). In the case of high dimensional
(HD) data, a simple AR estimation is not feasible due to its
computational complexity. Thus, in a first stage PCA serves
as a preprocessing step for dimension reduction: X = WY,
with Y =

(
Y(1), . . . ,Y(N)

)
, the principal component (PC)

matrix X ∈ RD×N , and the mixing matrix W ∈ RD×D.
Let XC and WC be the reduced PC and mixing matrices
consisting of the first C rows of X and W, respectively.
XC(n) is now MVAR-modeled, and the modeled time series
X̂C(n) is afterwards transformed back into the original HD
space via left multiplication of the pseudo inverse WC+ of
WC . The residuals of the whole model are then gained by
Ê = WC+

X̂C −Y.
For the GCI procedure, information of any channel has to

be canceled successively by reducing the data to Yd− ∈
RD−1×D, where the d-th row of Y is deleted. In the
framework of lsGCI this can be accomplished by an enclosed
modification of the reduced mixing matrix WC : For any d-
th elimination step, W is reduced to Wd− by eliminating

the last D−C rows and the d-th column. The reduced PCA
data are then gained by Xd− = Wd−Yd− and the obtained
model residuals can be transferred back to HD space via
Êd− = Wd−+ · X̂d− −Yd−. The lsGCI from d1 to d2 is
then defined by γd2←d1 = ln

(
Σ̂d1−

d2
/Σ̂d2

)
, where Σ̂d1−

d2
and

Σ̂d2
are the d2-th diagonal entries of the covariance matrices

of Êd1− and Ê.

B. Testing statistical significance

The null hypothesis H0 of no directed interaction from
vertex j to vertex i is equivalent to bij = 0. We used a
Monte-Carlo-Simulation with 1000 realizations to estimate
the distribution of lsGCIs under H0. Assuming that the
interaction from vertex j to vertex i, 1 ≤ i 6= j ≤ D
should be tested, the AR-matrix B is modified by setting
bij = 0, keeping all other parameters unchanged. Using this
modified AR parameter matrix a set of time series under H0

is generated and yields a set of lsGCIs γH0
i←j under H0. The

analytical distribution [3] was used for the classical GCI.
Statistical analyses were performed with 1% type I error.

C. Module detection and comparison of network partitions

For finding binary directed network partitions into mod-
ules or clusters of vertices, we applied the Louvain method
for hierarchical community decomposition based on modu-
larity optimization [4] (implementation used: [5]).

Module preservation in the networks identified by (ls)GCI
approaches can be verified by comparing their partitions with
the partition of the ground truth network on which they are
based. For it we computed the ratio of correctly classified
vertices (CCV) with regard to their known classification
(module membership), the partition distance (PD, normalized
variation of information) [6], [7] and normalized mutual
information between two network partitions (MI) [7]. Com-
plementary information to the similarity of network partitions
is obtained by assessing the quality of the partitions, i.e.
we additionally like to distinguish ”clear-cut” from ”weak”
network partitions. As quality functions we applied the mod-
ularity measure (Q) [8], [9], performance (PE), [9], coverage
(COV) [9] and the overall average silhouette width (OSW)
[10]. For Q we selected the variant that takes into account
the contributions of entire modules and not contributions
of vertex pairs. PE is the fraction of vertices of the same
modules that are connected by an edge and of unconnected
vertices that are not assigned the same module membership.
COV denotes the ratio of the number of intra-community
edges to total number of edges, which equals one in an
ideal partition. OSW is the average over all silhouette values,
quantifying the disbalance between the average intra-module
dissimilarity of each vertex and its smallest average inter-
module dissimilarity.

IV. RESULTS
A. Simulated data

To evaluate the effect of the embedded dimension reduc-
tion we considered Cohen’s kappa (Fig. 2) for measuring
the agreement between the ground truth adjacency matrix
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Fig. 1. Graphical representation of adjacency matrices with vertices reordered according to their module affiliation defined in the ground truth network.
(a) ground truth, (b) GCI (N = 3000), (c) lsGCI (N = 3000, 40 of 50 components retained, 84% variance explanation), (d) GCI (N = 1000), (e) lsGCI
(N = 1000, 40 of 50 components retained, 86% variance explanation). As expected, the preservation of adjacency information depends on time series
length and degree of dimension reduction. However even though reduced, the module structure is still apparent in all cases.

(Fig. 1(a)) and adjacency matrices identified by (ls)GCI ap-
proaches. Some corresponding example adjacency matrices
are shown in Fig. 1(b)-(e). In the case of the longer time se-
ries, N = 3000, the agreement with the ground truth is sub-
stantial up to very good. For N = 1000, the agreement may
be considered as moderate for the GCI and lsGCIs retaining
not less than 35 of 50 components, which corresponds to a
variance explanation of at least 78%. For long time series,
it was shown that a reduced number of retained components
indeed results in an inferior correctness of lsGCI results.
However, for reasonable dimension reductions the agreement
is kept within acceptable limits. In contrast, for smaller
numbers of samples positive effects of dimension reduction
on sensitivity and specificity may be observed [2]. A second
aspect is the influence of the embedded dimension reduction
on the detectable module affiliation, which is demonstrated
on the basis of partitions obtained by the Louvain algorithm.
Partitions of networks identified by (ls)GCI approaches were
compared to the known module affiliation of vertices in the
ground truth network. Considering CCV, PD and the MI,
the impact is manageable for N = 1000 (Table I). For
N = 3000 all quantities are constant (CCV = MI = 1, PD
= 0) with respect to all (ls)GCI approaches and the module
structure could be fully recovered. Similarly, for N = 1000
and N = 3000 the quality of the detected modules is high as
revealed by Q, PE, COV and OSW. As expected, the quality
is better for N = 3000, although here the PE is slightly
smaller (Table II). In summary, the module preservation is
very good, and the influence of the dimension reduction on
module recoverability and module quality is much lower than
one might assume by comparing edge patterns only (Fig. 2)
or comparing graphical representations of adjacency matrices
(Fig. 1).

TABLE I
NETWORK PARTITIONING: VERIFICATION OF MODULE PRESERVATION

N = 1000 CCV PD MI
GCI 0.924 0.116 0.852

lsGCI

45/50, 93% 0.892 0.177 0.795
40/50, 86% 0.860 0.237 0.743
35/50, 78% 0.898 0.169 0.807
30/50, 69% 0.873 0.209 0.765

Fig. 2. Assessment of detection accuracy by Cohen’s kappa. The ratios at
the abscissa denote the proportion of retained components.

B. Functional resting state MRI data

The high dimensionality of the fMRI data necessitates
our new large-scale GCI approach since no GCI-networks
could be computed (D > N ). Following the multiscale
framework of multiple thresholding of connectivity matrices
we dichotomized lsGCI-matrices at different threshold levels
[11] and subsequently performed the module detection on the
resulting binary networks. Similar to the simulated data set
it is noticeable, that the effect of the embedded dimension
reduction on the module structure seems small enough for
modules to be recoverable (Fig 3). Additionally, for our pilot
study data, the module structure is also more robust with
respect to threshold modifications as we expected, although
the network topology is directly affected. Most likely this
can be attributed to the fact that intra- and inter-module
connections are similarly influenced by threshold alterations.
It is notable that the dimension reduction with the highest
variance explanation does not necessarily result in the most
pronounced segmentation, when D increases in relation to
N . That effect was already described in [2] for artificial
data and can be observed here again. In summary, variance
explanations around 80% results in very similar module
structures (Fig. 3).

V. CONCLUSIONS AND FUTURE WORK

It could be shown that an appropriate dimension reduction
can be integrated into time series models for extending the
GCI to HD data. As expected, the degree of dimension
reduction affects the resulting identified network topology.
Yet, we found only little impact on the module structure,

2799



(a 2) (a 3)

(b 1) (b 2) (b 3)

(c 1) (c 2) (c 3)

(a 1)

Fig. 3. Functional segmentation of identified modules for various degrees of dimension reduction and threshold levels. The columns represents modular
structure of lsGCI networks with different levels of variance explanation (from left to right, 90%, 85% and 80%). The rows show segmentation in dependence
on different threshold levels used for network dichotomization (a: 80%-, b: 60%- and c: 40%-percentiles of lsGCI values). For all thresholds, dichotomized
networks consisted of one connected component.

TABLE II
NETWORK PARTITIONING: MODULE QUALITY ASSESSMENT

N = 1000 Q PE COV OSW
ground truth 0.651 0.914 0.903 0.395

GCI 0.529 0.858 0.731 0.090

lsGCI

45/50, 93% 0.454 0.883 0.602 0.063
40/50, 86% 0.422 0.907 0.547 0.059
35/50, 78% 0.441 0.881 0.602 0.059
30/50, 69% 0.438 0.894 0.575 0.049

N = 3000 Q PE COV OSW
ground truth 0.651 0.914 0.903 0.395

GCI 0.593 0.895 0.845 0.332

lsGCI

45/50, 92% 0.571 0.872 0.824 0.258
40/50, 84% 0.571 0.866 0.824 0.237
35/50, 75% 0.591 0.858 0.844 0.218
30/50, 66% 0.588 0.849 0.839 0.202

which is of particular interest when the detection of func-
tional similar vertices (voxels in the case of fMRI data) is
the primary objective. This result is remarkable in so far as
network modules in connectivity networks might represent a
map of regions with similar connectivity characteristics. Still,
interpretation of module structure projected back to fMRI
slices might be difficult, depending on prior physiological
knowledge, definiteness and localization of modules. Seg-
mentation of large-scale binary directed functional connec-
tivity networks is threshold-dependent. As a first approach
to deal with it, we performed an exploratory analysis of
different threshold levels [11] and showed that main features
of the module structure were preserved over a wide range of
thresholds and levels of variance explanation. Clearly, more
elaborate ways of dichotomizing weighted lsGCI networks

have to be applied in the future. From the practical point of
view, the determination of the optimal degree of dimension
reduction is still an open question. In the case of short time
series, it does not seem to be appropriate to explain as much
variance as technically possible. Here, a stronger dimension
reduction appears more appropriate - most likely because
less AR parameters have to be estimated resulting in reduced
estimator variances.
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