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Abstract— A priori discrimination of high mortality risk
amongst congestive heart failure patients constitutes an im-
portant clinical stake in cardiology and involves challenging
analyses of the temporal dynamics of heart rate variability
(HRV). The present contribution investigates the potential of
a new multifractal formalism, constructed on wavelet p-leader
coefficients, to help discrimination between survivor and non
survivor patients. The formalism, applied to a high quality
database of 108 patients collected in a Japanese hospital, en-
ables to assess the existence of multifractal properties amongst
congestive heart failure patients and to reveal significant differ-
ences in the multiscale properties of HRV between survivor and
non survivor patients, for scales ranging from approximately
60 to 250 beats.

I. INTRODUCTION

Congestion Heart Failure: Discriminating Survivors from
Non-Survivors. Human Heart Rate Variability (HRV) is
known to fluctuate in a highly irregular and complex manner
that reflects the health status of patients. The analysis of
HRV fluctuations can notably be used to discriminate healthy
subjects from patients suffering from congestive heart failure
(CHF). However, despite significant recent advances in ther-
apy, CHF is a difficult condition to manage in clinical prac-
tice and mortality remains unacceptably high. Medical stud-
ies have consistently reported a significant decrease in mor-
tality for patients equipped with implantable cardioverter-
defibrillators or undergoing resynchronization therapy. Risk
stratification for deciding a priori which patients should bene-
fit from such treatments therefore constitutes a stake of major
clinical importance. Identification of high-risk patients with
CHF remains a difficult and challenging task with current
available methods. It has thus recently received growing
academic interest and research efforts (cf., e.g., [1]–[3]).
Related works. After the seminal contribution [4] that
stimulated the massive use of spectral analysis for HRV char-
acterization, the benefits of using alternative tools dedicated
to non linear, non Gaussian and non stationary analyses were
investigated (cf., e.g., [5], [6] and reference therein). In the
last two decades, evidence was gathered that the temporal
dynamics of HRV fluctuations are well described by fractal,
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or scaling, properties, characterized notably by 1/f power
spectra [7]–[10], multifractality [11], [12], or non Gaussian
distributions with fat tails [13], [14]. It has been shown
that the alterations of such properties can be associated
with certain diseases and can thus be used as diagnostic
tools [11], [15]. For instance, an increased departure from
Gaussianity (in HRV increments computed on a 25s scale) is
associated with an increased cardiac mortality risk in a cohort
of acute myocardial infarction (AMI), with a predictive
power independent of other HRV indices [15]. Furthermore,
departures from Gaussianity have been shown to be relevant
in the evaluation of increased mortality risk in CHF patients
[3] and compared against fractal exponent and variance in
beat interarrival times reported in [2].
Goals, contributions and outline. In this context, the
present contribution aims at investigating to which extent
multiscale and multifractal analysis enables to help discrim-
inating between survivor and non-survivor CHF subjects. It
relies on the use of a new tool, the wavelet p-leader multi-
fractal formalism, very recently proposed in [16]–[18] and
briefly defined in Section III. This statistical analysis tool is
expected to yield better estimation performance and to show
significant robustness in quantifying the scaling properties of
real world data [16]. It is applied to a high quality database,
described in Section II, consisting of 24h HRV data for 108
CHF patients collected at Fujita Health University Hospital,
Japan. Results are presented and discussed in Section IV, in
terms of compared multiscale behaviors, powers of statistical
tests and Kaplan-Meier Survival Curves. Conclusions are
drawn in Section V, also discussing of future works.

II. DATABASE

Database. A cohort of 108 CHF patients was enrolled
at Fujita Health University Hospital, Japan, during years
2000-2001. The cohort was constituted of 61 male and 47
female subjects, with age ranging from 21 to 92 (average
66.1 ± 14.8) years. Of these patients, 39 (36.1 %) died
within the follow-up period of 33± 17 months (range 1-59
months). Medication status before hospital discharge did not
significantly differ between survivor (SV) and non-survivor
(NS) patients. Clinical details for these CHF patients were
previously reported in [3].
Data. For each patient, a 24-hour Holter ECG recording
was collected prior to Hospital discharge. R peaks were
extracted and thoroughly reviewed for outlier removal and
detection error correction. When atrial or ventricular pre-
mature complexes occurred, they were handled by median
interpolation using two successive beats. It has also been
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checked that no sustained tachyarrhythmias were present in
HRV recordings. The corresponding RR inter-arrival time
values, denoted as X ≡ {xn, n = 1, . . . , N}, are analyzed
as a time series, without resampling on a regular time grid.

III. WAVELET P-LEADER FORMALISM

Multifractal analysis. Multifractal analysis aims at char-
acterizing the fluctuations along time n of the local regularity
of a signal X , classically measured by the Hölder exponent
h, by means of the so-called multifractal spectrum D(h)
(cf. [19] for a theoretical introduction). D(h) can be further
described using multifractal parameters (e.g., the multifractal
exponents described below.) It has already been massively
used to analyze HRV both in adults [11], [20] and fetuses
[21], [22]. Numerous declinations of multifractal formalisms
(the practical counterpart of multifractal theory that actu-
ally enables to compute the multifractal parameters) were
proposed and compared (cf. [20] for a review). Notably,
declinations of the (discrete) wavelet transform have proven
to yield some of the most relevant multifractal formalisms
(cf. e.g. [22]–[24]). The present contribution relies on a new
tool, referred to as the wavelet p-leader formalism, that has
been theoretically introduced in [18] and recently studied in
[16], [17].
Wavelet coefficients. Let ψ denote the mother wavelet,
characterized by a strictly positive integer Nψ defined as
∀n = 0, . . . , Nψ − 1,

∫
R t

kψ(t)dt ≡ 0 and
∫
R t

Nψψ(t)dt 6=
0 and referred to as the number of vanishing moments.
The (L1-normalized) discrete wavelet transform coefficients
dX(j, k) of X are defined as dX(j, k) = 〈ψj,k|X〉, with
{ψj,k(t) = 2−jψ(2−jt− k)}(j,k)∈N2 . For detailed introduc-
tions to wavelet transforms, readers are referred to e.g., [25].
Wavelet p-leaders. The p-leaders are defined as local
Lp-norms of the fractional integral of order γ of wavelet
coefficient, 2jγdX(j, k),

L(p,γ)(j, k) =
(
2j

∑
λj′,k′⊂3λj,k

|2j′γdj′,k′ |p2−j
′
)1/p

, (1)

with λj,k = [k2j , (k+1)2j) and 3λj,k =
⋃
m{−1,0,1} λj,k+m.

The parameter γ ≥ 0 must be chosen to ensure a minimal
regularity constraint (cf. [16]–[18] for theoretical develop-
ments). Parameter p can be freely chosen in a range p ∈
(0, p0) where p0 is implicitly defined by

η(p0) + γp0 = 0, (2)

with 1/nj
∑nj
k=1 |dX(j, k)|p ∼ Kp2

jη(p), 2j → 0. The
p-leaders enable to measure the fluctuations of the local
regularity of X , quantified by its p-exponents hp, and to infer
the corresponding multifractal parameters (cf. [16]–[18] for
details, beyond the scope of this contribution.)
Cumulants. The quantities used in this work for character-
izing the multiscale and multifractal properties of X are the
cumulants C(p,γ)

m (j) = Cumm lnL(p,γ)(j, ·) of the variables
lnL(p,γ)(j, k), commonly used for multifractal analysis [24],
[26]. For X with perfect fractal properties (such as self-
similar or multifractal processes), it can be shown that [26]:

C(p,γ)
m (j) = ν(p,γ)m + c(p,γ)m ln 2j . (3)

When applied to exactly self-similar processes, c(p,γ)1 is
tied to the self-similar exponent as c(p,γ)1 = H + γ. It is
thus generically referred to as the self-similarity exponent.
Exponents c(p,γ)m , m ≥ 2, do not depend on γ and are directly
related to the multifractal properties of data, thus referred to
as multifractal exponents. Making use of (3), the exponents
c
(p,γ)
m can be estimated by linear regressions of the sample

cumulants C(p)
m (j) against ln 2j , for j ∈ [j1, j2].

IV. RESULTS AND DISCUSSIONS

p-leaders multiscale HRV analysis. To apply the p-
leader multifractal formalism, parameters γ and p need to be
selected. First the wavelet coefficients dX(j, k) are computed
from the 24h RR interarrival time series for each subject.
Inspection shows that for most subjects Condition (2) can not
be satisfied with γ = 0 for any p0 > 0. This provides us with
a first and crucial information regarding HRV and scaling:
Multifractal analysis can not in general be applied to HRV
data without the a priori recourse to a fractional integration
of small yet non zero order to ensure minimal regularity. The
value γ = 0.5 is found sufficient to ensure minimal regularity
for all subjects. To simplify the characterization of the entire
database, this value is used for all subjects.

With this choice for γ, the p-leaders L(p,γ)(j, k), the log-
cumulant functions C(p,γ)

m (j) and the exponents c(p,γ)m can be
computed for p ∈ (0, p0), where p0 varies amongst subjects
but p0 ≥ 4 for all subjects. It is found that p = 1 yields
the optimal classification between SV and NS subjects. In-
terestingly, this low value of p matches the theoretical results
reported in [16], [17] showing that estimation performance
generically improve with decreasing p. All results reported
below are thus computed with parameters (p, γ) = (1, 0.5).

Furthermore, it is chosen here to analyze cumulants up
to order m = 3, i.e., C(p,γ)

1 (j), C(p,γ)
2 (j) and C

(p,γ)
3 (j)

corresponding respectively to the mean, the variance and
(essentially) the skewness of lnL(p,γ)(j, ·).
Statistical discrimination between NS and SV patients.
To assess the discriminative power of p-leaders for the
temporal dynamics of NS versus SV CHF patients, Wilcoxon
rank-sum tests are used together with Kaplan Meier Cumula-
tive Survival Curves (KMSC), following the methodology in
[3]. KMSC curves are obtained by choosing a threshold for
a chosen attribute (say c

(1,0.5)
1 ) and splitting the population

into two groups of predicted NS and predicted SV with
attributes above and below this threshold, respectively. Over
the follow-up period, the population of a group decreases
each time one of its members dies such that with an ideal
discrimination, the population of the predicted SV class
would remain constant while that of the predicted NS class
would decay to zero. Differences between the decrease of
the curves for the two groups are assessed by the Mantel-
Haenszel Logrank test: Let nSV and dSV (resp., nNS and
dNS) denote the total number of subjects and the number of
deaths occurring in class SV (resp., NS). Let d = dSV +dNS ,
n = nSV + nNS . Under the null hypothesis that the
survival curves of the two classes are equal, the test statistic
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Fig. 1. Log-cumulants C
(1,0.5)
m (j) as functions of the log of the

scale and discrimination between SV and NS patients. Left column:
C

(1,0.5)
m (j) for m = 1, 2, 3 from top to bottom. Right column: � log10(p-

value) for each octave j (a value above the threshold 1.30 (dashed horizontal
black line) indicates a p-value below 0.05 and thus a significative difference
between SV and NS).

Z = n2(n�1)(dSV �nSV d/n)2

nSV nNSd(n�d) ⇠ �2
1 follows a chi-squared

distribution with 1 degree of freedom.
Furthermore, we assess classification performance in

terms of Sensitivity and Specificity.

Discriminative power of multifractal properties. Fig. 1
shows log cumulants C

(1,0.5)
m (j) as functions of (log2 of) the

analysis scale a = 2j , and calls for the following comments.
First, it can be observed that, both for NS and SV, all three

log cumulant functions C
(1,0.5)
m (j) (Fig. 1, left column) dis-

play satisfactory linear behavior across scales 23  a  27.
This indicates that HRV temporal dynamics display scaling
properties across groups of 8 to 128 beats. This partially
matches with previous analysis of RR interarrival time series
reporting scaling in range of 10 to 1000 beats [10]. Such
scaling have often been quantified via the so-called ↵2

scaling parameter when measured by Detrended Fluctuation
Analysis (DFA) (cf. e.g., [3] and references therein). Note
that the slope c

(1,0.5)
1 of the function C

(1,0.5)
1 (j) can be

understood as a robust estimator for ↵2. Thorough theoretical
and practical comparisons between DFA and p-leaders will
be detailed in a forthcoming study.

Second, the fact that the slopes c
(1,0.5)
1 differ (Fig. 1, top

left) constitutes a clear indication of a change in the self-
similar temporal dynamics between SV and NS subjects.
Accordingly, Fig. 2 (top right) shows that KMSC computed
from c

(1,0.5)
1 has a moderate discriminative power, slightly

below the significance level 0.05.
Third, multifractal exponents c
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and third log cumulant functions, C
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2 (j) and C
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(Fig. 1, middle and bottom left), are observed to clearly
depart from 0, a strong evidence that scaling in RR in-
terarrival HRV time series possess multifractal properties,
both for SV and NS patients. The range (or power) of the
fluctuations of regularity of RR interarrival HRV time series
is identical for NS and SV patients. Yet, no significant change
in the multifractal temporal dynamics conveyed by c

(1,0.5)
2

and c
(1,0.5)
3 is evidenced between NS and SV patients. Ac-

cordingly, KMSC computed from them (Fig. 2, middle and
bottom right, respectively) show no discriminative power.
Discriminative power of multiscale properties. Multi-
fractal analysis consists of a demanding model as it relies
on the assumption that data follow (3). To alleviate such
assumptions, log cumulant functions C

(1,0.5)
m (j) can be ex-

amined independently at each scale a = 2j regardless of
whether (3) is satisfied or not. These are referred to as the
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properties induced by (3)) and provide a measure for the non
Gaussian characteristics of p-leaders at each scale j.

First, it is observed that the function C
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1 (j) (Fig. 1,

top right) clearly discriminates between SV and NS temporal
dynamics for scales a = 2j ranging from 26 ' 60 to
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(Fig. 1, middle and bottom left), are observed to clearly
depart from 0, a strong evidence that scaling in RR in-
terarrival HRV time series possess multifractal properties,
both for SV and NS patients. The range (or power) of the
fluctuations of regularity of RR interarrival HRV time series
is identical for NS and SV patients. Yet, no significant change
in the multifractal temporal dynamics conveyed by c

(1,0.5)
2

and c
(1,0.5)
3 is evidenced between NS and SV patients. Ac-

cordingly, KMSC computed from them (Fig. 2, middle and
bottom right, respectively) show no discriminative power.
Discriminative power of multiscale properties. Multi-
fractal analysis consists of a demanding model as it relies
on the assumption that data follow (3). To alleviate such
assumptions, log-cumulant functions C(1,0.5)

m (j) can be ex-
amined at each scale a = 2j independently, regardless of
whether (3) is satisfied or not. These are referred to as the
multiscale properties of data (to distinguish from multifractal
properties induced by (3)) and provide a measure for the non
Gaussian characteristics of p-leaders at each scale j.

First, it is observed that the function C
(1,0.5)
1 (j) (Fig. 1,

top right) clearly discriminates between SV and NS temporal
dynamics for scales a = 2j ranging from 26 ' 60 to
210 ' 1000 beats. Interestingly, C(1,0.5)

1 (j) for NS patients
is systematically below that of SV patients, indicating a
clear decrease in the overall power (or variance) of the RR
inter-arrival times HRV time series. This thus materializes
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a decrease in the overall variability of heart rate, generally
considered a sign of bad health. Accordingly, KMSC com-
puted from C

(1,0.5)
1 (j = 7) (Fig. 2, top left) indicate a high

discriminative power between NS and SV patients.
Second, the functions C(1,0.5)

2 (j) (Fig. 1, middle left) show
no significant change between NS and SV at any scale and
the KMSC computed from C

(1,0.5)
2 (j = 7) (Fig. 2, middle

right) indicates little to no discriminative power.
Third and foremost, the third log-cumulant function (skew-

ness type) C(1,0.5)
3 (j) (Fig. 1, bottom left) is observed to

significantly differ for scales ranging from 24 ' 20 to 210 '
1000 beats. The KMSC computed from C

(1,0.5)
3 (j = 7)

(Fig. 2, bottom left) reflect this fact and show highly signi-
ficative discriminating power between NS and SV patients.

These observations confirm multifractal analysis: There
exist clear yet subtle changes in multiscaling properties of
RR interarrival HRV time series. Changes in C(1,0.5)

1 (j = 7)
indicate changes in the power (or variance) of the time
series themselves, a significant decrease being manifest for
NS patients; The absence of change in C

(1,0.5)
2 (j = 7)

indicates that the range of the fluctuations of lnL(p,γ)(j, ·)
at any scale does not differ between NS and SV patients;
Conversely, the change in C(1,0.5)

3 (j = 7) indicates a strong
positive asymmetry of the fluctuations of lnL(p,γ)(j, ·) for
NS patients. In equivalent terms, the fluctuations of the time
series of NS patients are characterized by the same variance
but stronger power law like heavy tails and stronger departure
from log-normal tails as those of SV patients.

V. CONCLUSIONS

Making use of the recently proposed p-leader wavelet
coefficients multifractal formalism, the multifractal and mul-
tiscale properties of RR interarrival HRV time series tempo-
ral dynamics of survivor and non-survivor congestion heart
failure patients were compared. For both classes of patients,
clear scaling and multifractal properties are evidenced. While
a (weakly) significant difference is observed for the self-
similar scaling exponent c(1,0.5)1 , no clear differences are
evidenced for the multifractal exponents c(1,0.5)2 and c(1,0.5)3 .

Instead, clear differences are reported for the first and
third log-cumulant functions, C(1,0.5)

1 and C(1,0.5)
3 , for scale

A = 27 ' 100 beats. Equivalent results are obtained with
scales 26 or 28 corresponding to ' 60 or ' 250 beats. These
results are strongly consistent with (and slightly outperform)
those reported in [3] where a significant departure from
Gaussianity for detrended increments of the RR interarrival
HRV time series is found around a scale of 40 beats.

It comes as a surprising result that the third log-cumulant
function yields significant differences when the second one
does not, while they are both related to the non-Gaussianity
of the data. The differences of the third log-cumulant indicate
a subtle change in the heavy tails of the fluctuations that
will be further investigated. This preliminary analysis will
be further continued by comparing against age-sex matched
healthy subjects. Also, the 24h data enables us to study
potential differences between awake and sleep phases.
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