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Abstract— The interpretation and analysis of intrapartum
fetal heart rate (FHR), enabling early detection of fetal acidosis,
remains a challenging signal processing task. The ability of
entropy rate measures, amongst other tools, to characterize
temporal dynamics of FHR variability and to discriminate non-
healthy fetuses has already been massively investigated. The
present contribution aims first at illustrating that a k-nearest
neighbor procedure yields estimates for entropy rates that are
robust and well-suited to FHR variability (compared to the
more commonly used correlation-integral algorithm). Second,
it investigates how entropy rates measured on multiresolution
wavelet and approximation coefficients permit to improve
classification performance. To that end, a supervised learning
procedure is used, that selects the time scales at which entropy
rates contribute to discrimination. Significant conclusions are
obtained from a high quality scalp electrode database of nearly
two thousands subjects collected in a French public university
hospital.

I. INTRODUCTION

Intrapartum fetal heart rate monitoring. Intrapartum fetal
heart rate monitoring is mostly performed by cardiotocogra-
phy, simultaneous recording of fetal heart rate and uterine
contractions. Fetal heart rate variability (F-HRV) serves as a
direct source of information about fetal behavior and reaction
to the stress induced during delivery. Monitoring intrapartum
F-HRV allows clinicians to timely and appropriately in-
tervene to prevent adverse long term sequels caused by
intrapartum asphyxia, such as neuro-development disability,
cerebral palsy, and neonatal encephalopathy [1]. Intervention
decision essentially relies on the visual inspection of FIGO-
defined features, such as base rate and variability [2].
Related works. F-HRV complex temporal dynamics have
been analyzed using numerous tools already involved in adult
HRV analysis, such as spectrum estimation [3], nonlinear
analysis [4], fractal analysis [5], [6]. Amongst those tools, the
various declinations of the concepts related to complexities
and entropies, and their abilities to discriminate between
healthy and non healthy subjects, have received significant,
continuous, and on-going efforts [7], [8], [9]. Complexities
and entropies can be defined either from the (deterministic)
dynamical system framework or from the (random) stochastic
processes one. The former context led to the construction of
tools that have become standard references in HRV analysis,
both for adults and fetuses: Approximate Entropy (AE) [7],
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Sample Entropy (SE) [10], regarded as practical approxima-
tions to Kolmogorov-Sinai or Eckmann-Ruelle complexity
measures (cf. e.g., [11] for a review). Further, they were re-
fined in the so-called Multiscale Entropy (ME), that evaluates
Sample Entropy for various low-pass-downgraded version
of the original data [12]. The stochastic process framework
lead to the definitions of Shannon and Rényi entropies and
entropy rates. While gaps remain to be bridged, several
relations connecting both worlds were obtained (cf. e.g.,
[11], [13] for reviews). The practical implementations of AE,
SE and ME essentially rely on Correlation-Integral based
algorithm (CI) [7], [12], [14] while that of Shannon entropy
rates instead is usually based on a k-nearest neighbor (k-NN)
algorithm [15], which was recently shown to bring robustness
and improved performance to entropy estimation [16].
Goals, contributions and outline. This contribution aims at
evaluating the extent to which an approximation of Shannon
Entropy rate measured on normalized wavelet and approx-
imation coefficients at various time scales lead to efficient
discrimination between the temporal dynamics of F-HRV of
healthy fetuses against fetuses suffering from acidosis. To
that end, entropies and wavelet decompositions (recalled in
Section III) are applied to a high quality database of almost
two thousands of intrapartum F-HRV time series, collected
in a French academic Hospital (described in Section II). The
benefits of using the k-NN algorithm compared to the CI
ones are discussed. Further, a supervised learning is used
to investigate at which time scales wavelet and approxi-
mation coefficient based entropy rates permit to improve
discrimination between acidotic and non acidotic fetuses (cf.
Section IV).

II. DATABASE

The database, collected at the public academic French
Hospital Femme-Mere-Enfant, from 2000 to 2010, consists
of 3049 intrapartum CTG signals, acquired using scalp
electrode by STAN S21 or S31 system, with 12bit resolution,
500 Hz sampling rate (STAN, Neoventa Medical, Sweden).
Clinical information for each woman and neonate were
systematically collected by obstetricians in charge, cf. [17].
For the present study, CTG signals matching the quality
criteria detailed in [4], [6] were selected, yielding 1816
records for analysis, amongst which 60 fetuses were suffering
from metabolic acidemia (umbilical artery pH ≤ 7.05). We
further refer to this later group as abnormal, as opposed to
normal for the remainders.

Analysis is performed directly (without resampling) on the
interarrival times time series X = {x1, . . . , xn = tn+1 −
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tn, . . . xN}, where tn is the occurrence time of the n-th
R peaks. Analysis is conducted systematically on the 40
minutes directly preceding the active stage of labour.

III. METHODOLOGY

Entropy rate. The temporal dynamics of the stochastic
process underlying observation X can be characterized
using Shannon Entropy rate h = limm→∞ hm, where
h = Hm+1 − Hm with Hm Shannon Entropy for the joint
distribution pm of the m-dimensional vector X(m) built
from X: X(m)

i = (xi−m+1, . . . , xi): Hm = −E[log pm] =
−
∫
. . .

∫
pm(X(m)) log pm(X(m))dx1 . . . dxm, cf. e.g.,

[11]. Although m should be large, in practice observation
finite size jeopardizes estimation performance for large
m, so one usually uses m = 3 as a trade-off. Theoretical
connections between an Information Theory quantity,
h3 = H3 −H2, and different dynamical system complexity
measures, AE and SE, are detailed in e.g., [11], [13].

Estimation. Estimation of h3 relies on our own implemen-
tation of the k-NN algorithm, described in [15]. The full
description of that algorithm is beyond the scope of the
present contribution, that instead intends to emphasize the
central difference with the CI algorithm (commonly used
to compute AE and SE). Both algorithms essentially aim at
measuring the density of the distribution of pm around X(m)

i

and both rely on a distance d (usually the L∞ norm distance)
to evaluate how close X

(m)
i is from other vectors X(m)

j .
The CI algorithm counts the number Bm

i (ε) of neighbors
of a central point X(m)

i within a ball of radius ε which is
set a priori (counting or not the central point itself), while
the k-NN algorithm reverses the perspective and computes
the distance ε needed to embed the k nearest neighbors of
the central point, where k is set a priori. AE – resp. SE –
is then computed from the ensemble average (over the set
of vectors X(m)

i along the time series) of the logarithms of
the (normalized) numbers Bm

i and Bm+1
i [7] – resp. the

logarithms of the ensemble averages of Bm
i and Bm+1

i [10].
The benefits of the k-NN algorithm in terms of performance
are discussed and illustrated in Section IV.
In the sequel, all quantities are computed on standardized
time series X to avoid differences only due to variances
which are irrelevant for temporal dynamics comparisons.
Moreover, the theoretical log(2ε) correction is added to AE
and SE to account for the arbitrary choice of ε [13]. We
choose k = 10 and ε = 0.2, unless otherwise stated.
Section IV-A compares these different entropy rate estimates:
AE, SE measured from CI against h3 measured using the k-
NN algorithm.
Wavelet and Approximation coefficient entropy rate. In
[12], Multiscale Entropy (ME) was defined, that evaluates SE
on successive low-pass versions of data. Expanding on that
idea, it is proposed here to investigate the benefits of com-
puting h3 on the (standardized) wavelet and approximations
coefficients stemming from a Discrete Wavelet Transform
(DWT). Let φ and ψ denote the scaling function and mother
wavelet associated to 1D Multiresolution Analysis [18]. The

wavelet and approximation coefficients X are defined respec-
tively as DX(j, k) = 〈ψj,k|X〉 and AX(j, k) = 〈φj,k|X〉,
with {ψj,k(t) = 2−jψ(2−jt − k)}(j,k)∈N2 and {φj,k(t) =
2−jφ(2−jt− k)}(j,k)∈N2 .

The collections of h3 computed, for each scale a = 2j ,
from AX(j, k) and DX(j, k), referred to as hA(j) and
hD(j), differ from ME in several ways. First, while hA(j)

are measured on low pass degraded versions of X (as
ME), the hD(j) are measured on band pass (around scale
a = 2j) filtered versions of X . They thus measure another
form of multiscale entropy that focuses on temporal
dynamics at scales around a = 2j only. Second, in ME,
successive approximations are computed for linearly spaced
scales a = 1, 2, 3, . . . , ... producing highly redundant and
correlated low pass versions of X , whereas for AX(j, k)
and DX(j, k) scales are logarithmically spaced a = 2j ,
thus producing far less redundant low-pass and band-pass
versions of X . The resulting hA(j) and hD(j) are thus
probing the temporal dynamics of X in a wider range
of scales. Third, smooth wavelet with large number of
vanishing moments can be used, diminishing the impact of
the windowing, compare to a crude direct uniform window
average. Daubechies wavelets with 3 vanishing moments are
used here. By convention, AX(0, ·) ≡ X and hA(0) ≡ h3
measured on X .

Feature selection and classification procedure. The goal
now is to find, amongst a vector of features x =
{hA(0), . . . , hA(6), hD(1), . . . , hD(6)}, the minimal subset (of
size l � L) that is used for training a classifier, which
generalizes well when applied to unseen data. To avoid
selection bias and data overfitting, the Wrapper method
for feature selection is used in the cross-validation (CV)
procedure [19]. The wrapper involves a sequential forward
selection (SFS) search procedure. It makes use of the Area
Under Curve (AUC) of Receiver Operational Characteristics
(ROC) curves for the performance criterion, and of Fisher
linear discriminant (FLD) analysis [20] for the classifier.
Equivalent results and conclusions were obtained using a
SVM classifier (not reported here for space reasons). The
CV procedure consist of a testing-training splitting inner-
outer loop nested design, cf. [19, p. 85]: The inner-loop
permits unbiased feature subset selection using the Wrapper
approach, while the outer loop serves for decision threshold
selection and performance evaluation. The procedure is re-
peated 50 times to reduce sampling bias. The number of best
features is varied from l = 1 to 5, to evaluate the benefits of
adding features.

IV. RESULTS AND DISCUSSIONS

A. Comparing k-NN to CI algorithms

Synthetic data. Because it has been chosen to study 40
minutes of data (before labour), analyzed time series may
have very different sample size (ranging from 3000 to 7000
beats, with mean at 5430 ± 594). To evaluate the impact
this may have on entropy rate estimation, 1816 series of
i.i.d., N (0, 1), with sample sizes matching the empirical data
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size distribution, are drawn at random. Fig. 1(a) shows that
estimated means of SE, AE and h3 clearly differ, that can
be compared against theoretical values (cf. [13]). Fig. 1 thus
confirms the commonly accepted result that the standard
CI-based estimation of AE should not be used in practice
as it shows large Mean Square Error (MSE) performance
(large bias and variance), cf. Table I. It also shows both
departure from Gaussianity and strong dependence on the
choice of ε (Fig. 1(b)) and on the analysis scale a = 2j

(Fig. 1(c)), because of its strong dependance on sample size.
Further, although SE compares well against the k-NN based
estimation of h3, it shows a slightly larger sensitivity to the
choice of ε (Fig. 1(b)) and more importantly a much larger
variance when scales a = 2j increases, i.e., when sample
size decreases (Fig. 1(c)).
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Fig. 1. Comparisons on synthetic data. i.i.d. N (0, 1) with sample
sizes matching data size distribution. (a): Empirical distributions ; (b):
Dependence on ε and k ; (c): Dependence on (the log of the) scale a = 2j .
CI-AE: (×) ; CI-SE: (◦) ; kNN-h3: (�).

TABLE I
ESTIMATED ENTROPIES FOR I.I.D. N (0, 1). SIZE DISTRIBUTION MATCH

THAT OF REAL DATA.

Algorithm Bias SD MSE skewness

CI-AE -0.2156 0.0195 0.2165 -0.6180
CI-SE 0.0043 0.0218 0.0222 0.0195

k-NN h3 -0.0232 0.0076 0.0244 0.0247

Comparisons on real data. Applied to the real F-HRV data,
the 3 estimates are observed to show equivalent performance
in discriminating normal from abnormal fetuses (measured
either in terms of p-value of the two sample Kolmogorov-
Smirnov (KS) test of equality of the distributions or AUC),
cf. Figs. 2(a) and (b). However, a careful examination of the
distributions of the estimates yields interesting observations.
First, Figs. 2(a) and (b) clearly show that real data are
actually characterized by negative entropies and also that dis-
tributions of estimates for AE and SE are strongly skewed, a
very negative characteristic for empirical estimates obtained
from a real-world population, where central limit theorem
is expected to yield Gaussian estimates. This is a direct
consequence of the CI procedure: The number of neighbors
obtained with embedding m, in an ε vicinity, are necessarily
included in those obtained with embedding m+1, so that that
the outputs of the CI procedure is bound to positive values,
hence skewed. AE and SE are thus taking negative values
only because the log 2ε theoretical correction produces a
negative shift. The k-NN procedure does not suffer from such
a limitation. Thus by construction the CI-based estimates of
AE and SE do not capture well the entropies corresponding

to fetus R-peak interarrival distributions, likely because of
their specific shapes induced by decelerations. Fig. 2(c) also
clearly shows that CI-based estimates of AE and SE present
(despite the theoretical correction log 2ε) a much stronger
dependence on the arbitrary choice of ε, while the k-NN
based estimate of h3 reveals a mild dependence on the choice
of k. This thus constitutes a very important property of the
latter estimate that yields significant robustness against the
arbitrariness of the choice of the vicinity parameter.

The results obtained from synthetic data as well as those
observed on real fetuses data, very consistent with those
reported in [16], strongly motivate us to prefer the k-NN
based estimate of h3, which is used in the sequel for
multiscale feature selection.
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Fig. 2. Comparisons on real data. Empirical distributions of normal
(solid) and abnormal (dashed) fetuses for SE (a), and KNN (b). Dependence
of CI-AE (×), CI-SE (◦), kNN-h3 (�) on ε or k (right).

B. Multiscale entropy and feature selection

Independent evaluation of feature discriminative power.
Table IV-B quantifies (with AUC) the discrimination abilities
of h3 computed on wavelet and approximation coefficients
at different scales. It clearly shows that the hD(j) are indi-
vidually poorly discriminative. For the hA(j), it reveals in-
terestingly that hA(j=1) shows the best discriminative power
and notably performs better than hA(j=0) (i.e., h3 computed
on X itself). Further, Fig. 3, reporting feature pairwise
correlations, reveals that hD(j=1) shows low correlation
with hD(j 6=1) or hA(j) at all other scales, indicating that
DX(j = 1) has different temporal dynamics compared to
all other DX(j) and AX(j = 1). These two observations
yield the first key result of the present contribution: The
time series X = AX(j = 0) can be read as the sum of
a lower approximation AX(j = 1), essentially consisting of
a denoised version of X obtained from a low-pass average of
two successive R-peak interarrival times, and an uncorrelated
non informative noise DX(j = 1). This high frequency noise
(at scale of 2 beats) might originate either from imprecise
location of R peaks in fetal electrocardiogram (FECG) or
from quantization (rounding distance between successive
R-peaks to an integer value). The denoised AX(j = 1)
thus provides a better description of F-HRV, with larger
discriminative power between normal and abnormal fetuses.
Joint evaluation of feature discriminative power. The
outcomes of the CV procedure described in Section III,
for l = 2 and l = 3, are reported in Table III. It shows
first that the CV procedure confirms the independent feature
evaluation: hA(j=1) is systematically chosen as the first and
most discriminative feature. In addition, the CV procedure
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TABLE II
AUC FOR ENTROPY ON WAVELET AND APPROXIMATION COEFFICIENTS.

scale (2j ) 0 1 2 3 4 5 6

AX(j) 0.64 0.69 0.67 0.66 0.63 0.60 0.55
DX(j) N/A 0.59 0.57 0.54 0.51 0.51 0.51

yields two new key results. Second, adding hD(4) to hA(j=1),
as the second most discriminative feature, leads to substantial
performance improvement. For the CV folds where hD(4)

was not chosen, hD(3) or hD(5) are selected as second
most discriminative feature, essentially yielding the same
conclusion: A band pass filtered version of X , around a scale
of a = 24 = 16 beats (possibly ranging from 23 = 8 to 25 =
32 beats), contains relevant information related to F-HRV
temporal dynamics contributing to improved discrimination
between normal and abnormal fetuses. Interestingly, a scale
of 10 beats is usually observed as discriminant in fractal
analysis (as the scale used to define two different scaling
exponents in Detrended Fluctuations Analysis of F-HRV [5]).
Third, it shows that adding a third feature does not improve
discrimination: The AUC performance are not improved and
the choice of the third features varies considerably across the
folds of the CV procedure. Also, it is worth mentioning that
supervised learning without CV procedure would lead to the
incorrect conclusion that increasing the number of features
to l = 3 (cf. Table III), and even to higher l (not shown here),
yield improved classification performance, when it actually
rather indicates data overfitting. CV in training and testing
is thus crucial for feature selection in classification.

C. Conclusions

This contribution illustrates the improved and robust per-
formance of the k-NN procedure for entropy rate estimation.
Further, it shows that high frequency fluctuations (at the
scale of 2 beats) in intrapartum R-peak interarrival times
series can be regarded as noise. Entropies measured on
AX(j = 1) are then more characteristics of F-HRV temporal
dynamics. Also, band pass filtered data at scale of ' 16 beats
convey information relevant to F-HRV temporal dynamics
and discrimination between normal and abnormal fetuses.
The importance of CV procedure in supervised learning
feature selection is also clearly illustrated.
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Fig. 3. Pairwise correlations of the hA(j) and hD(j).

TABLE III
FEATURE SELECTION WITH AND WITHOUT CV

feat. (l = 2) selected [%] rank AUC (no-CV) AUC (CV)

hA(1) 100 1.00 0.69 0.69 (0.68-0.70)
hD(4) 86 2.00 0.74 0.73 (0.72-0.74)
hD(3) 8 2.00 x x
hD(5) 5 2.00 x x
hD(6) 1 2.00 x x

feat. (l = 3)
hA(1) 100 1.00 0.69 0.69 (0.68-0.70)
hD(4) 82 2.02 0.74 0.73 (0.72-0.74)
hA(0) 51 2.98 0.76 0.72 (0.71-0.73)
hD(5) 18 2.63 x x
hA(4) 15 2.97 x x
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