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Abstract— In order to reverse-engineer the information pro-
cessing capabilities of the cortical circuit, we need to densely
sample neural circuit; it may be necessary to sample the activity
of thousands of neurons simultaneously. Frame scanning tech-
niques do not scale well in this regard, due to the time ”wasted”
scanning extracellular space. For scanners in which inertia can
be neglected, path length minimization strategies enable large
populations to be imaged at relatively high sampling rates.
However, in a standard multiphoton microscope, the scanners
responsible for beam deflection are inertial, indicating that
an optimal solution should take rotor and mirror momentum
into account. We therefore characterized the galvanometric
scanners of a commercial multiphoton microscope, in order to
develop and validate a MATLAB model of microscope scanning
dynamics. We tested the model by simulating scan paths across
pseudo-randomly positioned neuronal populations of differing
neuronal density and field of view. This model motivated the
development of a novel scanning algorithm, Adaptive Spiral
Scanning (SSA), in which the radius of a circular trajectory
is constantly updated such that it follows a spiral trajectory
scanning all the cells. Due to the kinematic efficiency of near-
circular trajectories, this algorithm achieves higher sampling
rates than shortest path approaches, while retaining a relatively
efficient coverage fraction in comparison to raster or resonance
based frame-scanning approaches.

I. INTRODUCTION
Understanding information processing at the neural circuit

scale is currently a major bottleneck to progress in under-
standing and treating brain disorders. To advance our under-
standing of neural circuit function, we need to densely and
near-simultaneously sample the activity of large populations
of neurons under controlled conditions. Calcium imaging by
multiphoton laser scanning microscopy (MPLSM) is one of
the most promising contender technologies, as it has both the
spatial resolution necessary to capture cellular processes in
vivo, allows monitored cells to be precisely localised, and in
some cases correlated with genetic markers, offers field of
view sufficient to monitor hundreds or thousands of neurons,
and has temporal resolution approaching that required to
record individual action potential evoked calcium signals.

However, most MPLSM experiments currently utilise
raster-based frame scanning strategies, which suffer from
suboptimal sampling rates and poor photon counting ef-
ficiency, due to time wasted scanning extracellular space.
This limits the number of cells from which spike trains can
be accurately detected. Several improved scanning strategies
have been developed, including inertialess scanning [1],
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and beam splitting approaches [2], [3]. These approaches
both require substantial customisation of hardware. Most
multiphoton microscopes are equipped with scanners based
on galvanometer mounted mirrors. Thus, the development of
efficient strategies for galvanometric scanning of large neural
populations at high sampling rate would enable widely avail-
able multiphoton microscopes to be deployed for the study
of neural circuitry. A significant advance in galvanometric
MPLSM was the recent development of the Heuristically
Optimal Path Scanning (HOPS) technique [4], in which the
Travelling Salesman Algorithm (TSA) is applied to soma
locations automatically extracted from a reference image, in
order to minimize the scanning path length. The performance
advances over frame-scanning with such an approach can be
substantial (Sadovsky et al reporting 1000 neurons at 8.5
Hz). However, neither this nor other previously developed
fast scanning strategies [5] [6] take into account the inertia
of the galvanometric scanners themselves, and thus are likely
to lead to suboptimal sampling rates.

In this paper, we propose a new scanning algorithm
(Adaptive Spiral Scanning, SSA) which drives the beam
in radially modulated circular motions, resulting in a spiral
trajectory fitted to pass through each detected soma. Due to
the kinematic efficiency of near-circular motions, this new
scanning strategy scales well to large neural ensembles, and
produces sampling frequencies higher than those previously
achieved. We demonstrate the application of the algorithm
through a MATLAB model of the galvanometric scan head
in a commercial MPLSM (Scientifica SliceScope).

II. MATERIALS AND METHODS

A. Characterization of the Galvanometric Scanners

Galvanometric Scanners (GS) are defined by two main
components: a moving magnet torque motor and a mirror
rigidly attached to the rotor. Thus, it can be characterized by
a mechanical system associated to an angular motion second
order differential equation (see (1)).

J
d2θ

dt2 + k
dθ

dt
+ cθ = Kt I (1)

where J is the inertia of the equivalent rotor-mirror system,
k the frictional constant, c the restoring constant and Kt the
driving torque constant. I and θ denote the current applied to
the motor and the angular position of the mirror, respectively.
In order to measure k and c, we recorded a step response of
the Model 6215H Optical Scanner (Cambridge Technology;
see Fig. 1). We used Labview (NI Ltd) to control the angle of
the mirror and acquired the angular position output from the
servo (MicroMax Model 671XX , Cambridge Technology).
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TABLE I: Estimated galvanometer parameters

k [kg.m2s−1] c [N.m.rad−1] z ωn [kHz] tr95%[µs]
X 1.75×10−4 2.04 0.82 19.1 161
Y 1.71×10−4 2.26 0.76 20.1 152

The step responses Fig. 1 to a 1 Volt input show an angular
deflection of 2 degrees (output voltage 0.5V/degree). Table I
shows the parameters estimated for our system. In this table,
z is the damping factor, ωn the natural frequency, tr95% the
95% rise time of the system, J = 5.6× 10−9kg.m−2, Kt =
3.78×10−3N.m.A−1 being the same for both GSs. The total
inertia J is calculated for the worst case scenario, taking the
higher value of the recommended load (the mirror) from the
data sheet. Our final GS closed loop model is described in
the block diagram shown in Fig. 2. The coefficients αX and
αY are estimated from an open loop simulation.

Fig. 1: Step response of the Cambridge Technology Model 6215H
Galvanometric Scanners.

Fig. 2: The GS model block diagram. d = 0.15m denotes the
distance from the centre of the Y mirror to the focal plane, and
e = 0.4m the distance between the X and Y mirror centres [7].

B. Simulation of populations of neuronal calcium signals

In our simulation we generated surrogate data using the
Izhikevich point neuron model [8], driving the dynamics of
a simulated genetically encoded calcium indicator with the
dynamics of GCaMP6 [9] (see Fig. 3). The population consist
of 80% excitatory and 20% inhibitory neurons. All of them
were randomly interconnected with a synaptic current within
[0, 0.5pA] for the excitatory neurons and within [-1, 0pA] for
the inhibitory neurons. Each simulated neuron also received
Gaussian synaptic noise (µ = 0, σ = 5 for excitatory neurons;
µ = 0, σ = 2 for inhibitory neurons) representing the external
thalamic input.

Fig. 3: Neural ensemble simulation underlying the system model.
Calcium dynamics of five simulated neurons (Izhikevich neuron
model). Four of the neurons are excitatory regular spiking neurons
and one is a fast spiking inhibitory neuron. Calcium transients are
modelled as an AP-evoked ramp (45 ms) followed by a single
exponential decay (150 ms), following GCamp6-like kinetics and
coupled to a white Gaussian noise.

III. RESULTS

We incorporated the two GS model described in Fig. 2
into the neuronal population simulation code, in order to test
algorithms for finding a rapid laser path through randomly
generated, pre-selected cell body locations.

A. Fitting spiral trajectories through a random population
of neurons increases the sampling frequency

For inertial systems, smooth patterns (with moderate
curvature) and continuous movements are well suited to
provide acceleration-free travel [11]. The spiral scanning
strategy is well known for imaging arrays and has already
been applied to two-photon microscopy experiments [12],
[13]. We propose here an extension: fitting a spiral trajectory
to a specific set of points, after an initial frame-scan to
determine soma locations. In order to reduce the impact of
inertia (i.e the transient acceleration period, see Fig. 1) in
our system, both GS are driven at constant angular speed.
This results in circular movements. We are then able to
sample all the cells through an algorithm that modulates
the radius of the circular trajectories resulting in a distorted
spiral pattern.

Algorithm description (pseudo-code):
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(a) (b) (c)

Fig. 4: Improved fit of spiral trajectories through a pseudo-random population of neurons. (a), (b) and (c) represent five, fifty and five
hundred cells, respectively, with the spatial density of active neurons in mouse V1 [10]. The blue trace represents the laser path of the
first cycle (starting in the centre of the FOV) and the red trace the laser path for all other cycles.

(a) (b)

Fig. 5: Sampling frequencies and useful signal ratio α achieved by the SSA algorithm. α is defined as the fraction of time the laser is
focused on active neurons during each cycle (the laser scanned n1 to nN ). (a) Sampling frequency achieved for spatial density of active
neurons in mouse V1 (in blue) and α associated (in green). (b) Three different FOVs: 500×500, 750×750 and 1000×1000 µm2. For
each graph we have averaged 5 different cell location configurations.

For a randomly distributed neuron population
{n1,n2, ...,nN}, N ∈N∗ in a certain Field Of View (FOV),
∀(i, j) ∈ N:

(i) Sort the neurons by their ascending radius ri to the
centre of the FOV.

(ii) For neuron ni apply sinusoidal current (IXi, IYi) to both
GS to drive the laser beam in a circular motion with
radius ri

(iii) While scanning circle ri,
for all the n j with r j > ri

if laser scans with sufficient sample n j
indx = indx+1

if laser scanned ni
i = i+indx

(iv) back to (ii)
(v) if scan nN −> go back to n1

The geometrical conditions used in this algorithm are fed
into the model (Fig. 2). At each instant, radius of the
circular trajectories is modulated. Although the impact of
inertia is still present, it is reduced by allowing multiple
cells to be scanned in a single period. For one cycle (the
laser scanned n1 to nN), the number of periods (360 degree
rotations) is less than the number of cells. In (iii), the
number of sufficient samples can be defined by the user for
the neurons that are traversed en passant. Using a driving
frequency of ωI = 10kHz and a FOV of 750×750 µm2 we
performed several simulations with different cell densities
(see Fig. 5(b)). With these parameters we achieved sampling
frequencies as high as 475Hz for 50 Cells and 105Hz for
1000 cells. This suggests that the SSA approach could
potentially achieve sampling frequencies higher than those
achieved by previously documented scanning approaches.
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B. Signal Acquisition

During signal acquisition, a matrix is collected, with
columns containing the photomultiplier output binned
throughout each cycle (see Fig. 6). To demonstrate the
system working, we applied it to the Izhikevich neuron
simulation (with calcium dynamics) described in Fig. 3. In
this example, the FOV was 500×500 µm2 for five neurons,
allowing a sampling rate of 5 kHz, well above the level
required to faithfully reconstruct calcium dynamics.

Fig. 6: Acquisition matrix for a 5 neuron population. Time series
are extracted by collecting and averaging rows in which the laser
is over the same neuron.

Fig. 7: Recorded fluorescence (∆F/F) from a simulated excitatory
neuron, demonstrating that, at least in simulation, the system is
capable of faithfully reproducing calcium dynamics.

IV. DISCUSSION

We have developed a novel galvanometric scanning algo-
rithm for two photon laser scanning microscopes, Adaptive
Spiral Scanning (SSA). Our algorithm has a number of
advantages over traditional frame-scanning approaches to
galvanometric scanning, yielding both higher sampling rates
and a higher proportion of time spent counting photons from
structures of interest. This indicates that it should allow
spike trains to be reconstructed from a larger population
of neurons (for a given detection accuracy), or with better
spike detection accuracy (for a given number of neurone)
than would be possible with frame-scanning. It also achieves
higher sampling rates than path minimisation approaches
such as HOPS [4], although at the expense of fraction of time
spent over neurons, as the latter method uses a ”stop start”
approach that allows dwelling over individual neurons in

order to increase photon count. The effect of this compromise
on spike train detection accuracy [14] remains to be studied.

One disadvantage of linescanning techniques including the
approach presented here is that they may be quite vulnerable
to movement artefact, being unable to take advantage of
image registration techniques to correct for motion artefacts.
This may prove to limit the number of cells to which the
algorithm can be scaled in vivo. We tested our algorithm
by simulating the galvanometric scanners in a commercial
multiphoton microscope, with parameters measured experi-
mentally from galvanometric step responses. Validation of
the algorithm in vitro and in vivo is the focus of ongoing
work. If validated experimentally, our algorithm could be
expected to enhance the number of cells that can be recorded,
and the temporal resolution of functional imaging, using
standard, off-the-shelf two photon microscope hardware.

V. ACKNOWLEDGEMENTS

We thank Alex Murray of Scientifica Ltd for useful
discussions on galvanometric scanning technology.

REFERENCES

[1] Y. Otsu, V. Bormuth, J. Wong, B. Mathieu, G. P. Dugue, A. Feltz, and
S. Dieudonne, “Optical monitoring of neuronal activity at high frame
rate with a digital random-access multiphoton (ramp) microscope.” J
Neurosci Methods, vol. 173, no. 2, pp. 259–270, Aug 2008.

[2] A. Cheng, J. T. Gonalves, P. Golshani, K. Arisaka, and C. Portera-
Cailliau, “Simultaneous two-photon calcium imaging at different
depths with spatiotemporal multiplexing.” Nat Methods, vol. 8, no. 2,
pp. 139–142, Feb 2011.

[3] M. Ducros, Y. G. Houssen, J. Bradley, V. de Sars, and S. Charpak,
“Encoded multisite two-photon microscopy.” Proc Natl Acad Sci U S
A, vol. 110, no. 32, pp. 13 138–13 143, Aug 2013.

[4] A. J. Sadovsky, P. B. Kruskal, J. M. Kimmel, J. Ostmeyer, F. B.
Neubauer, and J. N. MacLean, “Heuristically optimal path scanning
for high-speed multiphoton circuit imaging.” J Neurophysiol, vol. 106,
no. 3, pp. 1591–1598, Sep 2011.

[5] K. P. Lillis, A. Eng, J. A. White, and J. Mertz, “Two-photon imaging
of spatially extended neuronal network dynamics with high temporal
resolution.” J Neurosci Methods, vol. 172, no. 2, pp. 178–184, Jul
2008.

[6] V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostim-
ulation and imaging of neural circuits.” Nat Methods, vol. 4, no. 11,
pp. 943–950, Nov 2007.

[7] G. E. S. Gerald F. Marshall, Handbook of Optical and Laser Scanning,
2012, vol. Second Edition.

[8] E. M. Izhikevich, “Simple model of spiking neurons.” IEEE Trans
Neural Netw, vol. 14, no. 6, pp. 1569–1572, 2003.

[9] T.-W. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger,
A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman,
L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent
proteins for imaging neuronal activity.” Nature, vol. 499, no. 7458,
pp. 295–300, Jul. 2013.

[10] R. Cossart, D. Aronov, and R. Yuste, “Attractor dynamics of network
up states in the neocortex.” Nature, vol. 423, no. 6937, pp. 283–288,
May 2003. [Online]. Available: http://dx.doi.org/10.1038/nature01614

[11] A. Kovacs, “Scanning strategies for imaging arrays,” Proc. SPIE, vol.
702007, 2008.

[12] W. Goebel, B. M. Kampa, and F. Helmchen, “Imaging cellular network
dynamics in three dimensions using fast 3d laser scanning.” Nat
Methods, vol. 4, no. 1, pp. 73–79, Jan 2007.

[13] B. M. Kampa, M. M. Roth, W. Gbel, and F. Helmchen, “Represen-
tation of visual scenes by local neuronal populations in layer 2/3 of
mouse visual cortex.” Front Neural Circuits, vol. 5, p. 18, 2011.

[14] J. Onativia, S. R. Schultz, and P. L. Dragotti, “A finite rate of
innovation algorithm for fast and accurate spike detection from two-
photon calcium imaging,” Journal of Neural Engineering, vol. 10,
no. 4, p. 046017, 2013.

2840


