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Abstract— Breast cancer is one of the leading causes of
cancer death for women. Early detection of breast cancer is
crucial for reducing mortality rates and improving prognosis of
patients. Recently, 3D automated breast ultrasound (ABUS) has
gained increasing attentions for reducing subjectivity, operator-
dependence, and providing 3D context of the whole breast.
In this work, we propose a breast mass detection algorithm
improving voxel-based detection results by incorporating 3D
region-based features and multi-view information in 3D ABUS
images. Based on the candidate mass regions produced by
voxel-based method, our proposed approach further improves
the detection results with three major steps: 1) 3D mass
segmentation in geodesic active contours framework with edge
points obtained from directional searching; 2) region-based
single-view and multi-view feature extraction; 3) support vector
machine (SVM) classification to discriminate candidate regions
as breast masses or normal background tissues. 22 patients
including 51 3D ABUS volumes with 44 breast masses were used
for evaluation. The proposed approach reached sensitivities of
95%, 90%, and 70% with averaged 4.3, 3.8, and 1.6 false
positives per volume, respectively. The results also indicate that
the multi-view information plays an important role in false
positive reduction in 3D breast mass detection.

Index Terms— ABUS, breast cancer, multi-view, geodesic
active contours, SVM

I. INTRODUCTION

Breast cancer is the second leading cause of cancer death
for the women in the United States [1]. Early detection is
important for better treatment to reduce the death rate. Ultra-
sound imaging has been used as an adjunct to mammography,
serving as a screening tool to detect breast masses, and has
gradually gained popularity. Compared to mammography,
ultrasound imaging is less expensive, more sensitive for
detecting abnormalities in dense breasts, and introduces no
radiation. Since the manual mass detection on ultrasound
images can be time-consuming and subjective, Computer-
aided detection (CAD) of breast masses has been explored
by researchers. The goal of the CAD system is to achieve
high sensitivities and maintain low false positive rates. A
standard breast mass CAD system includes a pre-processing
step, a mass candidate segmentation step, and a classification
step [2]. The pre-processing step reduces noise and artifacts
of input images. Then mass candidates are segmented with
different methods, such as thresholding [3], active contours
[4], and Markov random field [5]. From the segmented
regions of interest (ROIs), features that represent texture,
morphology, and appearance can be extracted and fed into
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Fig. 1. An example of breast mass on ultrasound images. Top: a breast
mass overlaid on the ultrasound image on a representative slice. Bottom
left: zoom-in view with a bounding mask (white) labeled by doctors.
Bottom right: zoom-in view with the segmentation (yellow) generated by the
proposed method. Note the intensity inhomogeneity and weak boundaries.

classifiers, such as neural network [6] and support vector
machine (SVM) [4], to determine if a candidate is a true
mass or normal background tissue.

Most of the existing works are developed based on 2D
ultrasound images. In recent years, 3D automated breast
ultrasound (ABUS) imaging has been proposed, which over-
comes the disadvantages of operator dependency and limited
view of breasts in 2D hand-held ultrasound imaging. Moon
[7] and Tan [8] proposed 3D CAD following similar standard
2D CAD framework, where the classification follows the
segmentation of candidate ROIs. In 3D ABUS, to completely
scan the whole breast, two to five acquisitions are required
in slightly different orientations. These scans yield multiple
views of the same breast masses with large overlapping
regions. Although 3D ABUS provides important multi-view
information for breast masses, existing ABUS CADs assume
these views are independent, and do not take this information
into account.

In this work, we propose a 3D breast mass detection
approach to improve our recently developed voxel level mass
detection [9], by incorporating 3D region-based features.
More important, we explore the multi-view dependencies
to further reduce the false positives in 3D ABUS images.
Based on the candidate mass regions produced by voxel
level method, our proposed approach further improves the
detection results with the following major steps. 1) Mass
segmentation: In 3D ultrasound images, intensity inhomo-
geneity inside the masses and weak contrasts at mass edges
can are well-known challenges for segmentation in ultra-
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sound images. Fig. 1 gives such an example. The mass
boundary is strong at the anterior part, however, for some
regions at the lateral and posterior boundaries, the edges
start to fade; and inside the mass, image inhomogeneities
are recognizable. The image quality increases the difficulties
of segmentation and reliable extraction of features from
segmented candidates, and thus mass detection is also influ-
enced. To address this problem, the proposed method locates
the candidate boundaries with a directional search of edge
points. These edge points are further converted to boundary
information which is used in the geodesic active contours for
a robust segmentation. 2) Feature extraction: Region-based
features including texture, shape, intensity, etc., are first
extracted from segmentation regions. Since different views
of the same subject are dependent, in addition to extracting
region-based features from each candidate independently as
previous works, we compute features by incorporating the
multi-view information. For each candidate region, the multi-
view features are computed by measuring its similarity to
all other candidates across different views. This similarity
measurement approach is based on the assumption that the
same masses detected in multiple views share similar shape
and appearance features, while false detections caused by
noise and artifacts are less likely to appear in different views.
3) Classification: Features extracted from both single view
and multiple views are fed into the SVM to discriminate
each candidate region as a true mass or normal background
tissue. Details of each step are given in the next section.

II. METHODS

A. Voxel-Based Candidate Generation

Recently, we developed a novel topological texture
feature-based approach for mass detection in voxel level [9].
Concatenating with gradient concentration filter, this voxel-
based approach extracts topological texture feature named
Minkowski functional for each voxel and utilizes a classifier
to label each voxel as a breast mass voxel or normal tissue
voxel. The effectiveness of this mass detection approach
has been justified on 2D breast ultrasound images. In this
work we apply this 2D voxel-based approach along sagittal,
coronal, and transverse views sequentially to produce 3D
mass candidate regions. Detailed description of the voxel-
based approach is beyond the scope of this paper and can
be found in [9]. Although this voxel-based approach yields
high sensitivity, there are two limitations: 1) due to the
inhomogeneity and weak edges in 3D ABUS, the voxel-
based approach doesn’t generate accurate 3D representations
of the masses; 2) there are relatively high false positive rates
caused by artifacts and other normal tissues sharing similar
texture properties as masses. We further improve this voxel-
based detection results using a mass segmentation approach
and classification based on region-based features and multi-
view information.

B. Candidate Segmentation

To better extract reliable region-based features, a 3D
geodesic active contours (GAC) [10] framework is used to
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Fig. 2. Directional search of edges. (a) An illustration of directional
searching process. (b) An example of edge points (yellow dots). (c) An
example of edge maps generated from edge points. (d) Segmentation based
on the edge map.

produce more accurate mass candidate segmentation. Firstly,
we smooth the input image using the method in [11] to
suppress speckle noise. Then, using a level set function to
represent the object, the GAC evolves the object boundary
based on intensity information, as shown below:

∂u

∂t
= g(I)|∇u|κ+∇g(I) · ∇u, (1)

where u is the level set function, g(·) is a positive decreasing
“edge detector” function, and I is the image intensity [10].
Here we choose g(I) as:

g(I) =
1

1 + exp{ |(∇∗G)(I)|−β
α }

, (2)

where ∇ ∗ G is the derivative of Gaussian operator, and α
and β are constants.

However, due to inhomogeneity and weak edges, |(∇ ∗
G)(I)| does not always detect true edges. Directly evolving
the candidate regions on the intensity image fails because
the segmentation can easily be trapped in local maxima. To
tackle this challenge, a directional search of edge points is
first applied. Specifically, from the center of the candidate
seed regions, a set of rays in each direction are created,
and the points within a range on each ray are inspected
receptively. An illustration of the searching process is give in
Fig. 2(a). Inside the candidate, all the points on the ray are
considered; outside the initial candidate region, only points
within a distance of rmax to the candidate boundary in the
direction are considered. Among the points with increasing
gradient, the one with the maximum gradient magnitude is
selected as the edge point in this direction. The increasing
gradient constraint is enforced because the mass has lower
intensity than the regions outside. An example of the edge
points is given in Fig. 2(b).

The edge points give the approximate locations of edges.
To use them in the GAC, we calculate edge maps using
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these points. A Gaussian blur is applied on the points. Dense
edge points produce strong edges and sparse edge points give
low intensities on the edge map. Also because the search
of edge points is radial and points get sparser with larger
radii, a compensation of the distance to the origin of the
rays is made. The square of the distance to the ray origin is
multiplied on the edge map. An example of the compensated
edge map is shown in Fig. 2(c).

With the edge map, the GAC can be used to obtain the
segmentation. A bounding box containing the edge point is
used as an initialization. With |(∇ ∗ G)(I)| in (2) replaced
by the edge map, the GAC evolves the boundary of each
candidate. The result is close to the edges on the intensity
image, as shown in Fig. 2(d). Because the edge map is built
from smoothing a set of edge points, some details in the
intensity image are lost. Thus a final refinement is done
by using this result as the initialization and running another
GAC on the intensity image as in (1) to include the details.

C. Feature Extraction

1) Single-View Features: For each candidate segmentation
region, single-view features are extracted from individual
ABUS volumes independently. To capture shape features, the
width, height, depth, and volume of the candidate are used as
shape descriptors. To capture appearance features, the mean
and the variance of the intensity in the mass are used as
intensity features; the contrast, shade, energy, and entropy
of the gray level co-occurrence matrix (GLCM) [12], and
the Sobel operator are used for texture representation. Here
we apply the Sobel operator in anterior-posterior direction
and inferior-superior direction respectively. In each result
image, the mean and the variance of the intensity inside the
segmentation regions are computed as the Sobel operator fea-
tures. To incorporate the information from mass background
regions, posterior acoustic feature [13], mass boundary [13],
normalized radial gradient (NRG) [3], and minimum side
difference (MSD) [3] are also computed.

2) Multi-View Features: In our 3D ABUS data, more than
two scans with slightly different orientations are performed
to cover the whole breast. These scans have large overlap-
ping regions, which increases the probability that a mass
appears in more than volumes. The same masses detected in
multiple views share similar shape and appearance features,
while false detections caused by ultrasound artifacts are
less likely to appear in different views. Therefore, feature
similarity measurements across different views are computed
as multi-view features. Given a single breast scanned in
N different views, with Mi candidate masses detected in
each single view i, we represent candidate masses in view
i as Li,1, Li,2, ..., Li,Mi

. For any single-view feature x(i, j)
extracted from Li,j , j ∈ {1, 2, ...,Mi}, we compare it with
the corresponding feature x(k, l) extracted from the can-
didates Lk,l in other views (k 6= i, k ∈ {1, 2, ..., N}, l ∈
{1, 2, ...,Mk}), and the absolute difference ∆x(i, j, k, l) =
|x(i, j) − x(k, l)| is computed. Then the minimum is used

as the multi-view feature xmv(i, j):

xmv(i, j) = min
k 6=i,

l∈{1,2,...,Mk}

|x(i, j)− x(k, l)|. (3)

Compared to false detection caused by artifacts, the true
mass has higher probability of appearing on more than one
views, thus the minimum similarity measurement for each
feature is smaller for true mass candidates. A subset of
the single-view features is selected for multi-view similarity
measurement computation. Features that tend to share similar
characteristics between true masses and false detections in
different views, such as the mean intensity, are not selected.
In this work, the GLCM entropy [12], the posterior acoustic
feature [13], the lesion boundary [13], the Sobel operator
features, and the distance between mass candidate to nipple
are used for calculating multi-view features using (3).

D. Classification

Combining the single-view features and multi-view fea-
tures, each candidate region is represented by a 33 di-
mensional feature vector. A non-linear SVM [14] classifier
with radial basis kernel function is used for final mass
discrimination. The implementation of LIBSVM [15] is used
in this work.

III. EXPERIMENTS AND EVALUATIONS

The proposed approach was evaluated on 22 patients
with 51 3D ABUS volumes. Each patient was scanned
with more than one views. Images were obtained on a GE
Somo•v ABUS system. 44 masses were manually labeled
by a radiologist. Since our approach is developed to reduce
radiologists’ reading burden during screening, the focus is
on mass (including benign and malignant) detection instead
of mass characterization (diagnosis). The manually labeled
ground truth is sufficient to validate our screening tool, and
no biopsy reference was used in this experiment.

The voxel-based candidate generation steps reached 95%
sensitivity with 6.3 false detections per volume on average.
Therefore, overall 364 mass candidate regions, including true
masses and false detections, were used as inputs to our
segmentation and classification pipeline. Two cross-sectional
examples of the segmentation results are shown in Fig. 3. The
left column shows two original mass regions with bounding

Fig. 3. Examples of lesion segmentation. Shown together with the bounding
boxes representing the ground truth (labeled by radiologists) and the seed
regions generated using voxel-based approach [9].
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Fig. 4. FROCs of SVM and RF with and without multi-view features.

boxes of the ground truth labeled by radiologists. The seed
regions generated using the voxel-based approach [9] are
shown in the middle column. Lastly, the final segmentation
results using our approach are shown in the right column.
It can be seen that the proposed segmentation produces
more complete and accurate segmentation results than the
seed regions generated from the voxel-based approach. Also
notice the large size differences between the two mass
examples, where our approach yields good segmentations on
masses with large size variation.

The final classification performance was evaluated using
free response operating curve (FROC). Patient-based 11 fold
cross-validation was used in the classification evaluation. To
evaluate the performance of the SVM classifier, the random
forest [16] classifier was also built for comparison. Standard
parameters are used for the RF classifier. To evaluate the
importance of using multi-view features for false detection
reduction, classifiers using only single-view features and
single-view plus multi-view features were built respectively
and compared. The FROCs are plotted in Fig. 4. Three
selected FROC operating points at sensitivities of 70%, 90%
and 95% are shown in Table I. Overall, the SVM classifier
performs better than the RF classifier in our task, with larger
area under curve. For both classifiers, adding multi-view
information improves detection by reducing false positives
while maintaining the same sensitivity. Based on the voxel-
level input with 6.3 false positives per volume, we reduce
the averaged false positives to 5.4 with single-view region-
based features, and then further reduce this number to 4.3
by incorporating multi-view features at sensitivity level as
high as 95%. Slightly dropping the sensitivity to 90%, our
approach reaches 3.7 false positives per volume, yielding
over 40% false positive reduction.

IV. CONCLUSIONS

In this work, we proposed an improved 3D breast mass
detection approach by combing both 3D region based fea-
tures and multi-view features in ABUS images. Better 3D
mass segmentation is produced by incorporating boundary
information obtained from directional searching of edge
points into the GAC framework. The shape and appearance

TABLE I
NUMBER OF FALSE POSITIVES PER VOLUME AT SENSITIVITY 70%, 90%,

AND 95%. (SV=SINGLE VIEW, MV=MULTI-VIEW)

Sensitivity RF SV RF SV+MV SVM SV SVM SV+MV
70% 3.1 2.5 2.1 1.6
90% 5.2 4.5 3.9 3.8
95% 5.8 5.6 5.4 4.3

features extracted from segmentation regions are important
for discriminating the true masses from false detections.
The multi-view information plays an important role in false
positive reduction during screening. The combination of both
single-view and multi-view features reduced false detections
dramatically while maintaining a high detection rate of 95%
in 3D ABUS images.
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