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Abstract— Non-invasive EEG recordings are subject to 

effects such as surface conduction, resulting in very low signal 

to noise ratio (SNR). The conventional approach of using signal 

averaging to improve the SNR cannot be used for single trial 

EEG estimation. As such, this paper proposes a beamforming 

based technique that can be used to improve the signal quality 

from a signal trial EEG measurement. Results on experimental 

data show that the proposed technique can successfully isolate 

the signal of interest from background processes.  

 

I. INTRODUCTION 

In modern human computer interface environments, systems 

should be optimized to help humans make the “correct” 

decision at the right time for both healthy subjects and 

patients. Optimization may include maximizing safety and 

cognitive performance efficiency [1]. Recent advances in 

neuroscience have started to provide researchers with new 

imaging modalities to interact with the brain. 

Electroencephalography (EEG) is a powerful imaging 

modality for studying brain function. A wide body of 

literature exists on the uses of EEG for a variety of 

applications in cognitive neuroscience.  

 When used for measurements on human subjects, EEG 

signals are generally recorded with an electrode array placed 

on the subject’s scalp. Because these measurements are non-

invasive, effects such as surface conduction and attenuation 

result in recorded signals that have very low signal to noise 

ratio (SNR). The conventional manner in which the SNR 

(and hence signal quality) is enhanced is through signal 

averaging, whereby signals are recorded over a large number 

trial repetitions (epochs), following which these epochs are 

averaged in order to produce a single epoch with high SNR. 

The event related potentials (ERP) P300 speller brain 

computer interface (BCI) based system is a good example 

used in a wide range of different applications to aid disabled 

subjects in a home setting [2]-[3]. Despite the great 

successes achieved by BCI researchers, there are still some 

major challenges that confront using the P300 BCI systems 

in real life applications. These challenges include the 

relatively low bandwidth or rate of control information (the 

maximum reported is 25 bits/minute) [4]. Traditionally, the 
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speller systems which use letters or symbols require at least 5 

repetitions to suppress background electroencephalograph 

(EEG) activity and achieve acceptable accuracy. Hence, not 

all BCI researchers are certain that BCI will eventually 

replace motor movements to improve the lives of the 

disabled patients. In addition, applications where response 

time is crucial such as military surveillance and control will 

certainly require the BCI system to accurately respond to 

single trial or stimulus inputs. 

While signal averaging is a simple and effective technique to 

improve signal quality, its use is restricted to scenarios 

wherein the signal of interest can be reasonably assumed to 

be the same from one epoch to another. Consider, however, a 

scenario in which an ERP signal is recorded in response to 

the subject being surprised by some stimulus. If this stimulus 

is repeated, the subject will no longer be surprised and the 

resulting ERP signal will not be the same as before. In such 

cases, it is only possible to record the signal from a single 

trial, and thus signal averaging cannot be applied to improve 

signal quality. 

Work on the subject of improving single trial EEG signal 

quality is rather limited. Several papers on the use of 

beamforming for single trial EEG have been published, but 

these tend to focus on signal classification rather than 

estimation e.g. [5]-[9]. In this paper, a technique is described 

that applies beamforming in order to estimate the ERP signal 

by improving the signal quality from a single trial EEG. 

Estimation of the ERP signal yields more information about 

its characteristics compared to classification. This 

information is useful for BCI and cognitive engineering 

applications that require a higher rate of control information. 

The method uses the measured data to estimate the signal 

correlation and array response in order to perform spatial 

filtering on the signal.  

The rest of this paper is organized as follows: Section II 

describes the experimental procedure. Section III describes 

the beamforming technique. Section IV shows the results of 

applying the technique described in Section III to 

experimental data. Section V concludes the paper.  

 

II. EXPERIMENTAL PROCEDURE  

The experimental protocol was approved by the Institutional 

Review Board (IRB) at the National University of 

Singapore. The experimental recording system is composed 
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of a 62 channel EEG, one channel ECG and one channel 

EOG.  A total of 15 normal male and female subjects with no 

previous nervous system or psychiatric disorders and not on 

medications were invited to participate in the experiments. 

The experiments were carried out in a quiet room with a 

controlled level of luminance. After signing the consent 

form, the participating subject is seated such that the distance 

between the eyes and the monitor is approximately 57 cm, 

corresponding to a visual angle of 40 x 30 degrees. The 

EEG, ECG and EOG were recorded from each subject while 

performing an experimental task designed around the odd-

ball paradigm. Each experiment lasted approximately 90 

minutes including subject preparation, trials, and breaks. 

During that time, the subject was exposed to different 

cognitive workload levels. If the subject fell asleep during 

the experiment, the experiment was terminated and a new 

appointment was scheduled. In each experiment, the subject 

was presented with approximately 210 repetitive sequences 

of visual stimuli. The image was also randomly drawn from a 

database containing different object and human face images. 

Following the disappearance of the image, the subject was 

instructed to respond as fast as possible by pressing on the 

computer keyboard the letter ‘Q’ for a target sequence and 

‘P’ for a non-target sequence. A maximum window of 3000 

ms was allowed for the subject’s response. The target 

sequence was that which contained only a human face image. 

Out of the 210 different stimuli images, there were only 30 

images used for target sequences.  
 

III. SIGNAL ESTIMATION  

Consider an EEG array with N electrodes. Let v()N
 

denote the array response to a source originating at location 

Furthermore, denote the desired signal as sn which 

originates from t, denote the signals umn originating from 

locations m,  m =1…M, as other unwanted processes, and 

denote wn 
N
 as additive white noise. The measured signal 

xn 
N
 can be described as: 
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where xsn represents the desired signal vector and xin 

represents unwanted processes and noise.  

 

The goal is to determine a spatial filter vector hN
 that 

minimizes the effect of signals emanating from any location 

other than that of the desired signal. Mathematically, this can 

be written as the Lagrangian:  
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where Ri
N

 represents the autocorrelation matrix of xin. 

Note that the constraint term is necessary to avoid the trivial 

solution h = 0. Solving (1) yields the solution: 
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(2) is known in the array processing literature as the 

minimum variance distortionless response (MVDR) 

beamformer [10]. 

 

Unfortunately, the MVDR beamformer cannot be directly 

applied to single trial EEG. The main reasons for this are: 

 

• Since xin is not directly available, Ri cannot be 

computed. Note that the pre-stimulus region cannot 

be used as an interference training region since it 

does not reflect post-stimulus interference statistics. 

 

• The EEG array response and source location may 

not be known and hence v(t) cannot be computed. 

 

In order to overcome these obstacles, consider first Figure 1 

which shows a typical epoch of all 62 simultaneously 

recorded EEG signals (the different lines represent the 

individual channels).  
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Fig 1. Typical single-trial EEG (epoch) obtained from 62 channel 

system 

 

 

The P300 peak is quite pronounced and clearly visible. It is 

thus assumed that samples from around this peak are due 

primarily to the desired source. Consequently, they can be 

used to obtain an estimate of v(t). Moreover, it is possible 

to show that the same beamformer in (2) results by simply 

replacing Ri with Rx = E{xnxn
+
}, which is easily estimated  

directly from N data snapshots as 

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IV.  RESULTS 

Multiple trials (epochs) of EEG data were collected as 

described in Section II. For reference, the result of using 

conventional signal averaging over 30 epochs is shown in 

Figure 2. The method described in the previous section was 

then used to compute and apply the beamforming vector for 

a single epoch of EEG data.  

 

Figures 3-6 shows typical examples from different single 

epochs which demonstrate the capability of the proposed 

method in estimating the ERP signal on a single trial basis. 

In each figure, the left pane shows the raw multi-channel 

data, whereas the right pane shows the single trial result after 

beamforming. The right pane shows the result of using the 

MVDR beamformer in bold. For the purpose of comparison,   

the quiescent solution, which corresponds to simple 

uniformly weighted spatial averaging, is also included in the 

right pane. It is clear in all cases that the MVDR beamformer 

significantly suppresses other signals compared to spatial 

averaging. Moreover, the resulting signal is close to the time 

averaged signal in Figure 2. Thus, the proposed 

beamforming method can provide signal quality from a 

single trial that approaches that of a signal obtained from 

time averaging multiple trials. 
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Fig 2. EEG signal averaged over 30 epochs 
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Fig 3. Raw and beamformed data for Epoch 5 
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Fig 4. Raw and beamformed data for Epoch 8 
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Fig 5. Raw and beamformed data for Epoch 17 
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Fig 6. Raw and beamformed data for Epoch 28 

 

 

V. CONCLUSION 

Phenomena such as surface conduction and attenuation cause 

non-invasive EEG recordings to have low signal to noise 

ratio (SNR). For single trial EEG, this condition cannot be 

remedied using conventional signal averaging. In this paper, 

the EEG array response was estimated directly from a single 

epoch of data in order to compute an MVDR beamformer. 

Application of the resulting beamformer to experimental data 

shows that the proposed technique can yield a signal quality 

from a single epoch that is similar to the quality of a signal 
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obtained from time averaging a large number of epochs.  

Future work will focus on studying the dynamic variations of 

the ERP signal characteristics (including amplitude and 

latency) across all trials. 
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