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Abstract— Electroencephalogram (EEG) data analysis algo-
rithms consist of multiple processing steps each with a number
of free parameters. A joint optimization methodology can be
used as a wrapper to fine-tune these parameters for the patient
or application. This approach is inspired by deep learning neu-
ral network models, but differs because the processing layers
for EEG are heterogeneous with different approaches used for
processing space and time. Nonetheless, we treat the processing
stages as a neural network and apply backpropagation to jointly
optimize the parameters. This approach outperforms previous
results on the BCI Competition II - dataset IV; additionally, it
outperforms the common spatial patterns (CSP) algorithm on
the BCI Competition III dataset IV. In addition, the optimized
parameters in the architecture are still interpretable.

I. INTRODUCTION

In the analysis of functional brain activities, the electroen-
cephalogram (EEG) plays an important role because it is
a non-invasive, and non-obtrusive screening method with a
long history of application. Several practical methods for
reliably decoding brain activity have been developed, and
these methods have enabled brain computer interfaces (BCI)
systems [1] [2].

Over the years, neurophysiology knowledge has guided
the development of new EEG analysis methods. For exam-
ple, during movement tasks one can observe event-related
synchronization and desynchronization (ERS and ERD re-
spectively) on mu (8-13 Hz) and beta (15-30 Hz) rhythms in
electrodes near the motor cortex area. Given this information,
the most successful methods for motor imagery decoding
filter EEG signals at those specific bands [3] [4].

The topology of neural processing in the cortex means
that the spatial patterns of the neural activity are indicative
of the type of brain processing. The common spatial pattern
(CSP) [4] method and its extensions exploit differences in the
spatial patterns between conditions to decode the condition
type. Furthermore, spatiotemporal information is exploited
by first band-pass filtering the signals before applying CSP.
Finally, the power of different spatiotemporal projections
are treated as features for general classifiers such as linear
discriminant analysis [3] or support vector machines (SVM).

Algorithms that optimize the temporally filtering, spatial
projection, and classification have additional free parameters
that need to be selected, and often depend upon the subject.
Furthermore, we note that any processing stages manually
chosen by neuroscience knowledge may not provide the
best classification performance. The maturing field of deep
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learning uses adaptively trained deep neural networks (DNN)
[5] as a substitute for manually chosen processing. DNNs
are usually large hierarchical networks composed of homo-
geneous multilayer perceptrons with more than one hidden
layer in several different connection configurations, such
as convolutive, recurrent, or fully connected. Given their
generality, DNNs are powerful methods, but their practical
performance is limited by the potential to overfit the training
data, performing poorly on novel test data. Thus, DNNs
only became useful when combined with pre-training and
elaborated regularization schemes [5].

The main application of DNNs has been problems for
which large amounts of data are available: speech recogni-
tion, image classification [7], and natural language process-
ing [5]. They have not been applied to small-scale problem,
such as EEG where the number of subjects and trials is
limited. On these small-scale problems, the learned parame-
ters are still interpretable and are useful for the investigator,
whereas the hierarchical, homogenous processing layers in
deep learning are not readily interpretable.

Given these problems, we propose a strategy for “inter-
pretable” deep learning for EEG classification. The strategy
consists of framing the existing EEG processing pipelines as
a specific deep learning network, using specific algorithms
(e.g. CSP) to provide a pre-trained initialization, and then
optimizing the overall algorithmic suite for each patient and
condition. Using a fixed cost function on the output of
the neural network, backpropagation of the cost function’s
gradient enables the joint optimization of all the algorithmic
stages.

The remainder of this paper is organized as follows:
initially, we introduce the neural network architecture and
comment on its advantages and disadvantages, then we
demonstrate the algorithm’s record breaking performance on
the BCI Competition II dataset IV and show its performance
on 5 other human EEG datasets provided by the BCI compe-
tition III dataset IV-a, and finally, we propose future research
directions as well as recommendations for the practitioner
using the proposed method.

II. PROPOSED FRAMEWORK

Based on existing EEG motor imagery literature, mainly
inspired by the CSP method [4], we propose an analysis
framework consisting of three steps. The first layer is a
temporal filter, which can be implemented as a convolutional
layer for each channel. In neural networks, convolutional
layers can be interpreted as regular fully connected layers
with shared parameters [6]. The second step consists of a
spatiotemporal projection of the filtered signal. This can be
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implemented as a single fully connected feedforward layer
or two divided layers, one for spatial projection and another
for temporal projection. The third step is the classification
layer, which assigns labels to the input based on the features
learned by the previous layers. We can implement this
layer as a simple logistic regression layer, as a multilayer
perceptron (MLP), or as a SVM.

Given this architecture, all the layers can be optimized
together using backprogation. All the parameters are tuned
together for the final goal of classification. This is the main
advantage of the proposed framework versus methods that
define each layer independently based on heuristic knowl-
edge.

Another method that also proposes a unified framework
for EEG analysis is the Second-order Bilinear Discriminant
Analysis (SOBDA) [7], where the spatial filtering and spa-
tiotemporal projections are all well defined under a single
and elegant equation. Nevertheless, this method is not as
flexible as the one proposed here as it is limited by only
linear operations. Also, SOBDA does not allow us to exploit
heuristics for training neural networks that we discuss in
Section IV.

The main drawback of our method is also related to its
flexibility. If we try to learn an arbitrarily large DNN using
small datasets, the method will most certainly overfit the
training data. Thus, in order to verify the validity of the
present framework, we focus on strategies that can deal
with limited number of samples. For instance, the BCI
competition II contains only 316 training examples, each
example composed of 50 samples for 28 channels, which
means that if we try to train a neural network with a single
neuron and 5028 connections we would already have more
parameters than examples. Instead, what we propose for this
case is an architecture based on and initialized by the regular
CSP pipeline [3]. We represent this architecture in Fig. 1.

Mathematically, the proposed architecture can be de-
scribed as follows. Given a multichannel EEG matrix
Xchannel×time, spatial projection w, temporal projection v,
filter h, and the classifier weights u, we have

y = uT f
([

wT (X ? h)
]2

v
)

(1)

where is the value that will be plugged into an activation
function, where f(·) is the logistic function, and then feed
forward to a cost function. Here we used the cross-entropy
cost function, which is standard in logistic regression [5].
Also, the same filter is used on every row of the matrix. The
following gradients can be plugged in the backpropagration
chain rule for adaptation [7]:
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Fig. 1. Diagram of the deep neural network architecture for classifying
motor imagery from EEG. The adapted layers are circled.

III. EXPERIMENTS WITH BCI COMPETITION
DATASETS

Here we apply the proposed framework to human EEG
datasets.

A. BCI competition II, dataset IV

The first dataset, proposed in BCI competition II [8], was
recorded from a normal subject during a no-feedback session,
while the subject pressed keyboard keys using either hand.
Signals were recorded at 1000 Hz and down-sampled to
100 Hz with a band-pass filter between 0.05 and 200 Hz.
Each trial contains 50 samples per channel. The goal is
identify which hand the subject was using for each press.
The recorded signal is divided into 416 epochs: 316 are for
training and the remaining 100 are for testing.

To classify this data, we used the general strategy pro-
posed in Fig. 1. We separated part of the training set for
cross-validation. We fixed the learning rate η, and we used
early stopping [9] to determine how many epochs M , the
network needs to converge. Given those values, we trained
the network using the full training set for M epochs.

Our best results were obtained by using a fixed IIR filter
with pass-band between 8 and 30 Hz; initializing the spatial
projections with 5 CSP projections; and setting the temporal
projection to a single vector of ones. Note, as a rule of thumb,
we choose the CSP projections as those that correspond to
eigenvalues that are one standard deviation larger than the
eigenvalues mean.

The classification layer was randomly initialized from a
Gaussian distribution. We trained the network using η =
0.01 and M = 1700. For each training epoch, we use 4
random mini-batches of 1/4 of the training data and update
the weights using the stochastic gradient of each mini-batch.
The resulting classification rate is shown in Table I along
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with comparative results from other methods applied to the
same dataset, including a multilayer perceptron (MLP) with
a fully connected hidden layer.

Fig. 2. Temporal projection learned through backpropagation. The samples
nearer the motor action have higher magnitude weights.

Note that our method was initialized with the solution
that won the actual competition and reduced its final error
from 16% to 10%. This result is also 3 percentage points
better than the results obtained with SOBDA [7]. The code
to reproduce our results is freely available online1.

TABLE I
CLASSIFICATION ACCURACY (% CORRECT) OF SEVERAL METHODS

APPLIED TO BCI COMPETITION II DATASET IV.

DNNa CSP [3] SOBDA [7] MLPb

90% 84% 87% 65%
aMethod proposed in the present paper.
bMultilayer perceptron trained with a fully connected hidden layer.

To understand what the network learned, we investigated
its coefficients after adaptation. In Fig. 2, we show the vector
learned for the temporal projection emphasizes the time
points appearing closer to the motor action time. To verify
that these were important for classification, we used only the
last 30 samples in the original CSP framework and found
that this improves its performance by 2 percentage points.
However, we could only achieve the reported performance
when we adapt the layers together.

B. BCI competition III, dataset IV-a

This dataset consists of EEGs of 5 healthy human subjects
(aa, al, av, aw, ay). The number of training/testing sets for
each subject were 168/112, 224/56, 84/196, 56/224, and
28/252, respectively. Neural network based approaches are
not expected to perform well on such small datasets, but,
again, we initialized our results with CSP and fine-tuned
the parameters using backpropagation. We used the same
approach and parameters settings, η = 0.01 and M = 1700,

1https://github.com/EderSantana/DeepEEG

TABLE II
CLASSIFICATION ACCURACY (% CORRECT) FOR 5 SUBJECTS OF BCI

COMPETITION III DATASET IV-A.

aa al av aw ay
DNN 80.4% 100% 69.4% 93.7% 71%
CSP 63.4% 100% 69.4% 91.5% 67%

as the last dataset. Results are in Table II. The average error
was reduced from 27% to 17%, but the error reduction was
more modest than the previous dataset due to the smaller
training samples. Throughout, the DNN performed better
than or equal to CSP

IV. DISCUSSIONS
In this section we comment on the machine learning

aspects that should be of most interest for those further
developing the present framework.

A. Data augmentation

Here, we dealt with the problem of the small dataset by
pre-training our neural network with a previously defined
method. On the other hand, future research should consider
data augmentation, a technique that uses added variations of
training samples to increase robustness. Data augmentation is
explored in image processing where possible augmentations
consider the possible translations and rotations of the main
object of interest in the scene [10]. For EEG, this can be
done by breaking each trial into multiple temporal windows
and classifying the windows independently. Since the exact
timing may vary among trials, augmenting the data in time
could possibly make the network more robust to temporal
shifts.

B. Regularization techniques

Training large networks requires parameter regularization
to avoid overfitting. Our reported results used early-stopping,
which can also be interpreted as an L2-norm regularization
[9]. An L1-norm norm could be considered for automatic
channel selection or for selecting the number of CSP projec-
tions.

C. Parameter initialization

The recent success of neural networks for challenging
problems is based on better initialization techniques that
first try to model the distribution of the data [10] using
unsupervised learning. Here, we initialized our network with
parameters proposed by CSP, which is based on a discrim-
inative statistical test. Using discriminative pre-traning has
not been previously explored by the deep learning literature.

D. Training band-pass filtering layer

Here our best results were obtained using a fixed band-pass
filter. The filter was a zero-phase IIR. Thus, its implemen-
tation goes beyond what can be done with the convolution
layer, which defines a FIR. Such filter can only be imple-
mented using recurrent connections, but as training recurrent
systems is beyond the scope of the present paper, we leave
this for future research.
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V. CONCLUSIONS
In this paper we proposed a strategy for the joint opti-

mization of multiple signal processing stages involved EEG
motor imagery classification. Basically, we reinterpreted the
main steps of the conventional EEG analysis pipeline as
layers in a neural network. This new approach allowed us
to wrap the previously ad hoc stages in EEG processing
using neural networks adapted with backpropagation. We
investigated this framework for datasets with limited number
of samples. To do so, we initialized our network with the
architecture and parameters provided by CSP and obtained
results that were better or equal to those obtained with CSP
alone. Additionaly, we showed that the deep neural network
could still have interpretable components.
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