
  

 

Abstract—Pattern recognition algorithms that use EMG 

signals have been proposed to help control powered lower limb 

prostheses. These algorithms do not automatically compensate 

for disturbances in EMG signals, resulting in deterioration of 

algorithm accuracies. Supervised adaptive pattern recognition 

algorithms can solve this problem, but require correct labeling 

of new data. Information from embedded mechanical sensors 

can be compared to the characteristic gait profiles of the 

different modes to identify the mode of the user’s most recent 

stride and provide a label for new data. The purpose of this 

study was to develop a gait pattern estimator (GPE) that could 

automatically make such a comparison. The GPE output was 

used to supervise an adaptive EMG-based pattern recognition 

algorithm. Our results indicate that using GPE-based 

adaptation helped prevent classification errors that would 

otherwise occur between experimental sessions. The GPE could 

accurately label new data with a low error rate of approx. 2%. 

The low error rate of the GPE was reflected in the accuracy of 

an adapted pattern recognition algorithm. The error rate of the 

adapted algorithm that was supervised by the GPE was not 

significantly different from one that used perfect supervision. 

I. INTRODUCTION 

Surface electromyography (EMG) signals have not yet 
been clinically implemented as a control signal for lower 
limb prostheses despite their frequent use in powered upper 
limb applications [1]. Powered prosthetic legs have recently 
become commercially available (OSSUR, BiOM) and 
several other advanced prototypes have been developed [2], 
[3]. These devices are capable of restoring a variety of 
locomotion modes (e.g., level walking, stair ascent, ramp 
descent) and assist the user by generating positive 
mechanical work at the knee and ankle joints [4]. The 
potential of these devices is diminished by the lack of a 
seamless and automatic method to select different modes 
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during normal use. Accurate EMG pattern recognition 
algorithms may be able to address this need. 

EMG signals have been integrated into control systems 
for powered leg prostheses as inputs to a pattern recognition 
algorithm that predicts the desired locomotion mode (i.e., 
locomotion mode prediction) [5]. Recent studies have shown 
that EMG signals complement the kinematic and kinetic 
information from mechanical sensors embedded within the 
prosthesis and significantly reduce the prediction error rates 
of pattern recognition algorithms [6]–[8]. However, these 
control strategies do not compensate for disturbances in 
EMG that occur during daily prosthesis use, such as those 
caused by electrode shift during donning and doffing, 
fatigue, or loss of skin contact due to volume fluctuation [9], 
[10]. These factors may result in the deterioration of 
prediction accuracy, which can endanger patient safety 
unless an adaptive mechanism to compensate for their effects 
is developed. 

Adaptive frameworks that learn from new patterns must 
be able to “label” those patterns with the correct locomotion 
mode (i.e., supervised learning). Previously proposed 
adaptive frameworks that compensate for EMG disturbances 
have not been implemented because there are no clinically 
acceptable and accurate methods to supervise new data used 
for adaptation [11]–[13]. Fortunately, human gait and the 
locomotion modes of the prosthesis are cyclic. Thus, 
kinematic and kinetic data acquired from embedded 
mechanical sensors can be compared to the characteristic 
gait profiles of the different modes to determine the mode of 
the user’s most recent stride (i.e., gait pattern estimation) 
[14]. This estimation can be performed automatically after 
the completion of each stride by using pattern recognition to 
classify gait patterns from the mechanical sensors. This 
technique could be used to correctly and automatically 
supervise the data used to update an adaptive system. This 
strategy, which identifies the locomotion mode after stride 
completion, is contrasted with locomotion mode prediction, 
which identifies the mode before the stride begins. 

The objective of this study was to develop and evaluate a 
gait pattern estimator (GPE) for supervision of an adaptive 
pattern recognition system for a powered leg prosthesis. This 
analysis was completed by evaluating the performance of a 
locomotion mode prediction algorithm that uses the GPE to 
adapt algorithm between experimental sessions.  
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II. METHODS 

A. Experimental Protocol 

Four subjects with unilateral transfemoral amputations 

completed the experiment, which was approved by the 

Northwestern University Institutional Review Board. 

Subjects’ ages ranged from 30 to 66, heights between 1.75 

and 1.87 m, and weight between 77.1 and 96.6 kg.  

A skin-fit suction socket was custom made for each such 

subject. The socket had embedded stainless-steel electrodes 

that recorded EMG signals from nine muscles: 

semitendinosus, biceps femoris, tensor fasciae latae, rectus 

femoris, vastus lateralis, vastus medialis, sartorius, adductor 

magnus, and gracilis. The electrodes were inserted into the 

socket based on locations identified by a physical therapist. 

A certified prothestist attached and aligned a powered knee 

and ankle prosthesis to the subject’s socket. The Center for 

Intelligent Mechatronics at Vanderbilt University designed 

the prosthesis used for this experiment [3]. Published 

strategies were used to tune the leg in each mode for each 

subject in previous sessions [4], [6], [15].  

The data collection procedure for this experiment has been 

described before in previously published literature [7]. 

Briefly, each subject completed 20 repetitions of a 

locomotion circuit that included level-ground, ramps, and 

stairs. An experimenter triggered the prosthesis between 

modes at heel contact and toe-off [5]. These 20 repetitions 

were repeated in a separate session during a different day.  

B. Signal Processing 

Kinetic and kinematic information from thirteen 

embedded mechanical sensors embedded in the prosthesis 

were recorded at 500 Hz. Nine EMG signals from the nine 

aforementioned muscle sites were recorded at 1000 Hz using 

a custom-built EMG system. This system used a Texas 

Instruments TI-ADS1299 instrumentation chip and also used 

a hardware bandpass filter with between 20 and 450 Hz.  

For locomotion mode prediction, data were segmented 

into analysis windows of 300 ms before heel contact and toe 

off. Mechanical sensor features and EMG features were 

extracted from each analysis window. Mechanical sensor 

features included mean, maximum, minimum, and standard 

deviation [6]. EMG features included mean absolute value, 

waveform length, zero crossing, slope sign changes and the 

first two autoregressive coefficients of a third order 

autoregressive model [10], [16]. Thus, the information prior 

to each step (i.e. the 300 ms analysis window) is a vector of 

features that is classified by a pattern recognition algorithm 

that predicts the desired mode, i.e., a locomotion mode 

predictor. The predictor can use either mechanical sensors 

features only, or the combination of EMG features and 

mechanical sensor features to make its prediction. The 

predicted locomotion mode determines the behavior of the 

prosthesis over the next stride.  

For gait estimation, mechanical sensor data were 

segmented by stride (i.e., from one heel contact or toe off to 

the next heel contact or toe off). For each of the thirteen 

mechanical sensor channels, the following features were used 

to characterize each stride: initial, final, minimum, maximum 

and mean value as well as the standard deviation of the 

channel across the stride. Thus, the information over the 

entire stride is a vector of mechanical sensor features that is 

classified as one of five locomotion modes by a GPE. The 

GPE is simply a pattern recognition algorithm that estimates 

the locomotion mode of the user’s most recent completed 

stride, instead of predicting the mode of the upcoming stride. 

C. Supervision Strategies and Adaptive Framework 

We investigated two potential supervision strategies. The 

first method used to supervise adaptation was to assume that 

the label provided by a locomotion mode predictor that only 

used mechanical sensors was correct. This strategy of using 

the predictor’s decision (i.e., the output of the control system 

itself) as data labels has been proposed in previous literature, 

and will be used as a standard of comparison [12]. 

The second method used the output of the GPE to 

supervise adaptation. The GPE uses mechanical sensor data 

collected throughout the most recent stride to estimate that 

stride’s locomotion mode. The motivation for this approach 

is that each locomotion mode has a unique set of kinematic 

and kinetic characteristics that are captured by the 

mechanical sensors of the prosthesis. The estimated 

locomotion mode can supervise data used to update an 

adaptive system. 

In this study, adaptive locomotion mode prediction was 

implemented by adding data collected from the second 

experimental session to a training set that originally 

comprised of data from the first experimental session. Either 

the GPE or the locomotion mode predictor was used to 

supervise these new data. We can evaluate the performance 

of the adapted predictor (and consequently the impact of the 

chosen supervision strategy) by observing its error rate on a 

testing set comprised of data from the second session. 

D. Classifier Evaluation 

In this study, linear discriminant analysis (LDA) 

classifiers were used for both the locomotion mode predictor 

and the GPE. Leave-one-out cross validation of the 20 circuit 

trials was used to determine the error rates of the locomotion 

mode predictor and the GPE (19 trials in the training dataset 

and 1 trial in the testing dataset and repeated until each trial 

was in the test set once). Error rates reported are the pooled 

misclassification rates at heel contact and toe off as these are 

the transition points for the prosthesis. 

Three different comparisons were made for this study. The 

first comparison was between the error rates of the 

locomotion mode predictor that used EMG and mechanical 

sensors between experimental sessions. The locomotion 

mode predictor was trained exclusively on data collected 

during the first experimental session. Performance in the 
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second experimental session is the performance of the 

locomotion mode predictor that is tested on data from the 

second experimental session. Misclassifications were 

categorized as either steady-state or transitional 

misclassifications [7]. A paired t-test was performed for both 

steady-state and transitional error with classification error as 

the response and experimental session as a fixed within 

subject variable. The second comparison was made between 

the error rates of the two aforementioned supervision 

strategies, i.e., the locomotion mode predictor that uses only 

mechanical sensors, and the GPE, between experimental 

sessions. A repeated measures ANOVA was performed with 

classification error as the response and the experimental 

session and supervision strategy as fixed within subject 

variables with interaction terms. Lastly, we compared the 

performance of the adapted locomotion mode predictor on 

the testing dataset from the second experimental session 

under two different conditions representing the two 

supervision strategies, as well as performance when perfect 

labels are used. A repeated measures ANOVA was 

performed with classification error as the response and the 

supervision strategy as a fixed within subject variable. 

Variances between groups were not homogeneous based on a 

Levene’s Test, thus all the data were log transformed to fit 

the homogeneity assumption for ANOVA. Post-hoc tests 

(pairwise comparisons with Bonferroni corrections) were 

conducted on statistically significant variables of interest. 

III. RESULTS 

The steady-state error of the locomotion mode predictor 

that used both EMG and mechanical sensors was 

significantly higher (p=0.04) in the second experimental 

session than in the first (Figure 1). The difference in 

transitional error between experimental sessions for this 

predictor was not significant (p>0.05). In both the first and 

second experimental sessions, the GPE had a significantly 

lower error rate than the predictor that used mechanical 

sensors only (p=0.0001) (Figure 2). Neither strategy had 

significantly different error rates between sessions (p>0.05).  

The adapted predictor had the lowest error rate when all 

the labels of the added data from the second experimental 

session were correct (Figure 3). When the predictions of the 

mechanical sensors were used to label the data, the error rate 

of the adapted predictor was significantly higher (p=0.004). 

The error rate of the adapted predictor is significantly lower 

when the GPE supervised the data (p=0.039), and this error 

rate was not significantly different from its performance 

when perfect labels were used (p>0.05). 

IV. DISCUSSION 

 This preliminary study demonstrates the effects of using 

different supervision strategies to label data that is used to 

update a locomotion mode predictor. The steady-state error 

rate of the predictor that used EMG substantially increased 

when it was tested on data from the second experimental 

session. This result is expected because donning and doffing 

 
Fig. 1: Performance of the locomotion mode predictor between 

experimental sessions. The predictor uses the combination of EMG and 

mechanical sensors. Misclassifications are separated into steady-state and 

transitional errors. Data are averages of four subjects and error bars 

represent +/- 1 SEM. Within step type, groups that do not share a letter are 

statistically different. 

 
Fig. 2: Error rates of the two supervision strategies. Two different types of 

supervision strategies are shown, a locomotion mode predictor that uses 

mechanical sensors only, and a GPE. Data are averages of four subjects and 

error bars represent +/- 1 SEM. Groups that do not share a letter are 

statistically different. 

 
Fig. 3: Effect of different supervision strategies on adapted locomotion 

mode predictor error. The GPE or a locomotion mode predictor that uses 

mechanical sensors only were used to supervise data from the second 

experimental session that were added to the training set. Adapted predictor 

performance when all labels are correct, as well as the performance of a 

locomotion mode predictor that uses mechanical sensors only are shown. 

Data are averages of four subjects and error bars represent +/- 1 SEM. 

Groups that do not share a letter are statistically different. 
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the device would result in shifts in EMG electrode position, 

and subsequently signal changes that compromise 

performance. This highlights the critical need for adaptive 

strategies for EMG-based pattern recognition algorithms. 

Proposed myoelectric pattern recognition interfaces do not 

compensate for such disturbances, and the negative impact is 

observed in this study. Interestingly, a significant increase in 

error was not observed for transition steps.  

The comparison between the different supervision 

strategies showed that there was a slight increase in error 

when only mechanical sensors were used to make 

locomotion mode predictions between sessions, though this 

difference was not determined to be statistically significant. 

This result is expected because the readings from the 

embedded mechanical sensors should not change 

substantially between sessions.  Differences in error could be 

due to changes in the walking behavior of the subject in the 

second experimental session, or alignment changes. 

We also showed that a GPE that estimates the locomotion 

mode of the user’s most recent completed stride could 

accurately and automatically supervise data that are used to 

update a locomotion mode predictor. The error rate of the 

GPE was significantly lower than that of the predictor that 

used mechanical sensors in both sessions, meaning that most 

of the data used for updating were correctly labeled. 

Previous literature has demonstrated the negative impact of 

incorrectly labeled data on adaptation [12], so it is promising 

that the GPE had a low error rate. Moreover, the error rate of 

the GPE was not significantly different between 

experimental sessions (Figure 2). This means that subjects’ 

gait patterns do not change very much between sessions, and 

thus a GPE could be used to supervise new data.  

The error rate of the chosen supervision strategy was 

reflected in the error rate of the adapted locomotion mode 

predictor (Figure 3). Very few data were incorrectly labeled 

when the GPE was used, and thus the adapted predictor that 

used the GPE had an error rate that was not significantly 

different from that when perfect labels are used. When the 

predictions of the mechanical sensors were used, the error 

rate of the adapted predictor significantly increased. This 

highlights the importance of correctly labeled data. We 

would expect the error rate of our adapted predictor to be 

proportional to the error rate of the supervision strategy, i.e., 

the adapted predictor can only predict as accurately as its 

training data is labeled. Such findings are consistent with 

previous work [12], which showed that label accuracy 

impacts supervised pattern recognition algorithms. 

The presented work focused on potential supervision 

strategies for adaptive locomotion mode prediction in a 

powered leg prosthesis. In this study, data from all steps 

from the second experimental session were used to update 

the locomotion mode predictor. Future work should 

investigate whether specific steps should be used while 

others are not included in the training dataset. This study is 

also limited in the small amount of recruited subjects. Future 

work should expand the number of subjects. Lastly, this 

study used batch learning to update the locomotion mode 

predictor. This is clearly not an automatic method for 

adaptation, and would be better characterized as re-training. 

Future work should investigate online learning paradigms 

where the parameters of the pattern recognition algorithm are 

updated sequentially with each step. 
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