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Abstract— Brain activities are often investigated through
Electroencephalographic (EEG) data analysis using time-
domain Independent Component Analysis (ICA). Neverthe-
less, the instantaneous mixing model of ICA cannot properly
describe spatio-temporal dynamics, such as those related to
traveling waves of neural activity. In this work, we exploit the
application of the Complex ICA (cICA) to describe the underly-
ing brain activities in time and frequency domain. In particular,
we show how to effectively extract the most significant time-
frequency structure of cortical activity in order to solve a com-
pelling EEG-based pattern classification problem. The crucial
step of independent component selection among frequencies
is performed using an objective computational method based
on template matching techniques with physiologically-plausible
activations. Experimental results are obtained using on-line
EEG data from the BCI Competition 2003 and are expressed
in terms of confusion matrix after leave-one-out validation
procedure. A comparative analysis between ICA and cICA
models reveals that cICA estimation gives powerful information
and allows to achieve a higher classification accuracy with
respect to instantaneous ICA.

Index Terms— Complex Independent Component Analysis,
Electroencephalogram, Time-Frequency Analysis

I. INTRODUCTION

The multi-channel Electroencephalogram (EEG) [1] is
a powerful multivariate signal, derived from non-invasive
recordings, which reflects the synchronized electrical activity
of large neuronal populations. Several signal processing
techniques have been developed and are still under study to
support the diagnosis of brain disorders, tumors, cerebrovas-
cular lesions and problems associated with brain trauma [1],
[2].

Independent Component Analysis (ICA) algorithms [3],
[4] are a family of unsupervised statistical methods used for
decomposing a mixed signals into independent sources. ICA
has been proven to be an important tool for EEG analysis
for the extraction and separation of statistically indepen-
dent sources, and reveals more information than classical
methods such as Principal Component Analysis (PCA) [4].
ICA can be applied to EEG data in order to find proper
combinations of measurement channels, i.e. spatial filters,
resulting in temporally independent components. Standard
ICA can be applied successfully for artifact removal from
EEG signals, such as electrocardiogram, electrooculogram
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and skeletal muscle activity [4]. The instantaneous mixing
model has been applied also to the decomposition of EEG
neural sources, under the hypothesis of independence or
near independence of the temporal activity of local neural
populations, sparsely interconnected [5]. However, the ap-
plication of instantaneous mixing model to EEG data en-
counters several theoretical and practical limitations. Firstly,
the ICA mixing model assumes that EEG observations result
from a linear instantaneous combination of different sources.
Since the propagation of electromagnetic waves across the
brain tissues may be considered instantaneous at frequencies
of interest, this model may properly describe sources at
fixed positions within the brain. Such assumptions can be
too strong in case of EEG [1], [2], [6] because of the
spatiotemporal dynamics of EEG data. In fact EEG may
be characterized by traveling waves across the brain due to
the propagation of neural activity. In such a case the EEG
signal at a given electrode may be seen as a summation of
delayed sources. A similar phenomenon can originate when
different brain areas are coupled, although with time delays.
Another limitation of instantaneous mixing model is that the
obtained independent components (ICs) are related to the
EEG time-domain structure exclusively. In fact, EEG activity
has distinctive characteristics in different frequency bands,
as delta, theta, alpha, beta, and gamma bands, which may
be associated with different physiological processes [1]. To
overcome these limitations, a convolutive mixing model was
proposed by Anemuller et al. [6] to extract the underlying
EEG complex dynamics through effective estimation of the
EEG sources. Such a technique, so-called Complex ICA
(cICA), hypothesizes a linear mixing of convolved sources.
The convolutive model is solved in the frequency domain
by means of a time-frequency representation of the EEG
signals and by applying an instantaneous mixing model to
each frequency band.

This work aims at validating the suitability of cICA
approach to effectively decompose underlying brain activity
as recorded by EEG during a compelling task. To this
aim, we here describe how to classify EEG trials dur-
ing a sensorimotor rhythms modulation task, designed for
brain-computer interface application [7]. We present a study
comparing ICA and cICA spatial filtering as part of a
comprehensive processing chain able to distinguish 4 classes
referred to different mental states. To objectively choose
the ICs useful for classification purposes, an automatic
method based on template matching approach is proposed.
Experimental results were obtained using the dataset IIa from
BCI Competition 2003 [7] records and are shown in form of
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Fig. 1. (Left) Averaged power of the µ sensorimotor rhythm along the
time, evaluated among trials belonging to the target top (continuous line)
and bottom (dashed line).

confusion matrix [8]. Classification accuracies from Support
Vector Machine (SVM) [9] using cICA-based and standard
ICA-based methods were compared.

II. MATERIALS AND METHODS

In this section, we show the proposed approach describing
how practical issues regarding the application of ICA models
on EEG signals, i.e. EEG channel selection, ICA and cICA
spatial filtering and automatic ICs selection, were addressed.
Further details will be eventually provided in the extended
version. All algorithms were developed using Matlab v7.2,
exploiting graphics functions from the EEGLab Matlab tool-
box and using LIBSVM for SVM classification.
A. Experimental Protocol

As the experimental protocol was extensively described in
[7], [10], in this paragraph we briefly report on the descrip-
tion of the data set IIa of the BCI Competition 2003. The
dataset comprises acquisitions on three subjects. To introduce
the proposed methodology, we will show the results obtained
on one subject (identified as A). 64-channels EEG data were
recorded using surface electrodes at a sampling rate of 160
Hz during ten 30-min sessions consisting of a sensorimotor
rhythms modulation task. Each session contained 192 trials
of 4 seconds each. For each trial, the subject had to control
a moving cursor shown in a monitor. The vertical movement
of the cursor was determined by a linear combination of the
subject’s amplitude power in µ (8−12Hz) and β (18−24Hz)
frequency bands of signals related to three channels located
over sensorimotor cortex (i.e. CP1, CP3, CP5). The goal
was to match the final position of the cursor with the target
position indicated at the beginning of the trial. Each trial
started with one second of blank screen and another second
in which the target position appears on the right side of the
screen. Such a position was randomly chosen among four
possible positions/classes, i.e. top, up (middle-top), down
(middle-bottom), bottom. During the last two seconds, a
cursor appears in the middle of the left side of the screen and
travels at a constant speed to the right, and can be controlled
by the subject. Consequently, the screen is cleared and the
next trial begins.

Figure 1 shows the averaged power of the µ sensorimotor
rhythm along time, estimated from trials belonging to the
target top and bottom.

B. Channel Selection and Preprocessing

In order to apply the ICA and cICA algorithms, multi-
variate data comprised of as many EEG channels as possible
is strongly suggested. Nevertheless, high dimension of the

data could lead to a high computational load and estimation
problems leading, consequently, to an unreliable estimation
of the unmixing matrices. Moreover, to achieve reliable
components estimates, the maximum number of channels
that can be exploited is limited by the number of data
time points [5]. Therefore, when a high-resolution EEG
acquisition (i.e., ≥ 64 EEG channels) is performed, a channel
selection procedure is needed. The selected EEG channels
used in this work are 26, namely FC1-6, C1-6, CP1-6, P1-
6, PO3-4, according to the standard 10-20 system. This
choice is motivated by the engagement of the electrodes
upon the sensory motor cortex along with their mirrored
channels. Moreover, this choice is based on the correlation
study described in [10].

Concerning the preprocessing step, the signal coming from
each EEG channel was filtered by means of a fourth-order
IIR band-pass filter having cut-off frequencies equal to 1Hz
and 40Hz. Data were already provided with artifact-free
samples [7], [10].

C. Independent Component Analysis (ICA)

Considering the time-varying artifact-free EEG sig-
nals x(t) = (x1(t), x2(t), ..., xN (t))T , where i =
1, ..., N denotes the electrodes, as a linear instanta-
neous mixture of statistically independent sources s(t) =
(s1(t), s2(t), ..., sM (t))T , it is possible to model xi(t) as
xi(t) =

∑M
k=1 aiksk(t) where the operator T stands for the

transpose operator of the matrix, and A = {aik}MxN is the
linear mixing matrix. Assuming the statistical independence
of the sources, ICA aims to estimate the unmixing matrix
W such that y(t) = Wx(t). Therefore, signals y(t) provide
an estimation of s(t) being as statistically independent as
possible.

Different contrast functions are used in ICA algorithms
to maximize the independence among the output signals in
order to estimate the unmixing matrix. Here, we adopted the
FastICA algorithm using negentropy as a contrast function
[3].

D. Complex Independent Component Analysis (cICA)

The cICA assumes a convolutive model where each vari-
able is given by a linear summation of convolved sources
xi(t) =

∑M
k=1 aik ⊗ sk(t) where aik are finite impulse

response filters. The cICA procedure consists of two process-
ing stages. First, each signal from a chosen i-th electrode,
xi(t), of the measured EEG is decomposed into time-
frequency representation Xi(T, f) by using the short-time
Fourier transform (STFT). Then, the previously described
ICA algorithm is performed on the complex frequency-
domain data within each spectral band. Therefore, a set of
complex ICs is estimated for each frequency bin [6].

For each frequency, the signals Xi(f, t) are assumed to be
generated by independent sources Si(f, t) by multiplication
with a frequency-specific mixing matrix A(f) such that
Xi(T, f) = A(f)Si(f, t) with rank{A(f)} = N .

Afterwards, the estimates X̃(T, f) of the sources are
obtained from the sensor signals by multiplication with
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frequency-specific separating matrices W (f) such that
X̃(T, f) = W (f)Xi(T, f). The sources Si(f, t) are mod-
eled as complex random variables with a circular symmetric,
super-Gaussian distribution probability density function, and
the separating matrix W (f) is obtained by maximizing
the log-likelihood of the measured signals Xi(T, f). The
detailed mathematical derivation of the cICA is reported in
[6]. The cICA estimates Mc ICs which is equal to Mc =
BM(∆f)−1, with ∆f and B the frequency resolution and
band of the frequency representation, respectively.

An ambiguity of the cICA approach resides in the un-
known extraction order of ICs at each frequency. In practice,
there is a need to identify the sources Si(f, t) that belong
to the same IC in the time domain. This procedure, that
is usually referred as alignment of ICs, can be performed
exploiting correlations among the different sources [6], [11].

E. Automatic Independent Component selection and Pattern
Recognition

The IC selection aims at considering the most significant
ICs among the M and Mc when the ICA or cICA is applied,
respectively. Retaining all the ICs, in fact, could lead to a
non-optimized and redundant information as input for the
classification algorithm.

As we are dealing with a large amount of ICs given by
the cICA algorithm, an automatic IC selection procedure is
needed also to reasonably provide objective and improved
results. We propose a method based on template matching
between the estimated ICs with a physiologically plausible
activation. The template was chosen as the time-domain evo-
lution at a given frequency, extracted from channel CP3. As
we are dealing with EEG data gathered during sensorimotor
rhythms modulation tasks, we are interested in consistent and
significant activations within the µ (8−12 Hz) and β (18−24
Hz) frequency band, i.e. the so-called sensorimotor rhythms.
Given the inter-subject variability of the µ and β bands, a
power frequency analysis of EEG signals was performed to
validate such bandwidths. As an example, figure 1 shows
a physiological activation in µ band during two different
sensorimotor rhythms modulation tasks (see section II-A for
further details).

The Spearman correlation coefficient was selected as met-
rics for the computation of the matching score and a simple
thresholding was applied to identify ICs that should be
chosen. It is straightforward to notice that, when using cICA
algorithm, the IC selection is performed among ICs related
to frequencies belonging to the µ and β bandwidths. While,
in the standard ICA approach the correlation coefficient was
computed after STFT of the ICs.

Each chosen IC contributes in defining the feature set
related to each class. The feature set of the ICA and cICA
are comprised of the time evolution of the Power Spectral
Density features in µ and β bands. While in the former
case these features were obtained by STFT, in the latter
were obtained directly from ICs components. We compared
the performances given by the ICA and cICA spatial filters
using a multi-class Support Vector Machine algorithm [9]
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Fig. 2. An example of IC chosen after the application of the ICA algorithm.
The STFT representations and the power of the sensorimotor rhythms
during the target/class 1 (top) and target/class 2 (bottom) are shown. The
topoplot shows that the principal source of such an IC is generated from
the sensorimotor cortex.

with Leave-One-Out (LOO) cross-validation procedure [12].
More specifically, we used ν-SVM (ν = 0.5) having a radial
basis kernel function with γ = n−1, where n is the feature
space dimension.

The results are expressed in terms of confusion matrix
[8] in which the element rij indicates how many times in
percentage a pattern belonging to the class i was classified as
belonging to the class j. The more diagonal is the confusion
matrix, the higher is the accuracy of classification.

III. RESULTS

In this work, the six labelled sessions from the subject A
of the data set IIa of the BCI Competition 2003 are taken
into account for further evaluation. The EEG signals have
been preprocessed as described in paragraph II-B and the
last 2 seconds of each trial, when the cursor is controlled by
the subject, were analyzed.

Standard ICA results: concerning the application of the
standard ICA spatial filtering, PCA was applied to all the
available EEG data (six sessions, i.e., 1152 trials) gathered
from the selected 26 channels, retaining the first 15 compo-
nents which explain more than 98% of the total variance. On
such data, the FastICA algorithm was applied to estimate the
unmixing matrix W . The ICs having correlation coefficient
> 0.8 were selected for further analysis, resulting in five se-
lected ICs. The threshold value was empirically chosen as the
one giving best classification results. An example of chosen
IC is shown in Fig. 2. The feature set was comprised of 288
examples for each target class representing the power in µ
and β bands on each selected ICs. The classification result
was obtained using an SVM with leave-one-out procedure
and expressed in terms of confusion matrix as shown in Tab.
I. Having 4 classes, the random guess accuracy is 25%.

Complex ICA results: the application of the cICA spatial
filtering was performed on the concatenated time-frequency
representations of each trial. As concerns the short-time
Fourier representation, a windowing procedure was applied
with sliding Hamming time windows of 1 s length overlapped
of 0.1 s, so obtaining ∆f = 1Hz. For each frequency within
µ and β bands, the PCA was applied to retaining the first
22 components which explain more than 98% of the total
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TABLE I
CONFUSION MATRIX OF SVM CLASSIFIER USING STANDARD ICA.

Target 1 Target 2 Target 3 Target 4
Target 1 57.10 23.77 12.35 6.79
Target 2 20.00 35.00 27.14 17.86
Target 3 8.33 28.33 32.50 30.83
Target 4 8.77 14.61 30.52 46.10
Bold indicates the percentage of correct classification for each target class.

variance. As for the ICA, once the unmixing matrix W (f)
was estimated, five ICs were chosen showing a correlation
coefficient with the template > 0.65. The feature set was
comprised of 288 examples for each target class representing
the selected IC samples in µ and β bands on each selected
ICs. The classification result was obtained using an SVM
with leave-one-out procedure and expressed in terms of
confusion matrix as shown in Tab. II.

TABLE II
CONFUSION MATRIX OF SVM CLASSIFIER USING COMPLEX ICA.

Target 1 Target 2 Target 3 Target 4
Target 1 80.00 7.17 8.68 4.15
Target 2 5.41 92.79 0.45 1.35
Target 3 7.56 3.19 87.25 1.99
Target 4 1.97 5.91 1.97 90.16
Bold indicates the percentage of correct classification for each target class.

IV. CONCLUSIONS

In this work, we described how to effectively detect the
underlying brain activities in time and frequency domains
using Complex Independent Component Analysis (cICA) of
EEG signals. The EEG electrical activity, in fact, can be
seen as a result of a mixing process of the cortical neural
sources. Accordingly, standard techniques of blind source
separation such as linear instantaneous ICA algorithms are
used for the cortical source estimation with several applica-
tions ranging from artifact removal to neural activity analysis
[4], [5]. Nevertheless, a simple linear mixing model cannot
be sufficient to properly model and estimate the cortical
sources, because of the complex spatiotemporal dynamics of
the brain activity. All these issues can be afforded adopting
a more general mixing model, i.e. the convolutive mixing
model [6]. Taking advantage of the convolution theorem,
the EEG sources are estimated from the complex time-
frequency representation of the EEG signals according to the
short-time Fourier definition. In this paper, we described the
advantages in applying such an approach to solve a practical
and difficult EEG classification problem. A comprehensive
processing chain involving also preprocessing and pattern
recognition steps has been described. Both ICA and cICA
algorithms estimate a number of ICs equal to the dimension
of the input data. Given the high number of ICs, especially
when using cICA on high resolution EEG data, an ICs
selection procedure is needed. Therefore, we showed how to
objectively select such ICs using data-driven physiologically-
plausible templates. Our results are very satisfactory. When

using cICA spatial filters, the difficult 4-class problem is
effectively solved reaching more than 80% of classification
accuracy (see Tab. I). The results obtained with standard ICA,
instead, seem to indicate that a simple linear instantaneous
mixing model is less suitable for representing the underlying
brain activity, at least in this task. Several theoretical and
practical issues can still be raised concerning the proposed
methodology and could be the topic of an eventual extended
version of this manuscript. The first issue is related to the
channel selection strategy. In fact, it could be possible to
choose electrodes in a way to cover most of scalp surface,
at the expenses of sensor density. This alternative strategy
could take into account components originating in different
areas, as the frontal regions. Another issue is related to
the estimation of the unmixing matrices: the shown results
were obtained using all the available trials. This operation
is allowed since it does not need any trial labeling and
does not affect the independency between training and test
sets. Results obtained by estimating the unmixing matrices
without the test set could be provided. A comparison of
the results obtained adopting the two strategies could also
serve as an indication of data non-stationarity, i.e. inter-trial
variability. Concerning the ICs selection step, we adopted a
physiological plausible and data-driven template matching
method. Nevertheless, other approaches could be feasible
as, for instance, a choice based on the minimization of
mutual information among the ICs. This latter approach,
could reveal unexpected significant components relevant for
the classification.
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