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Abstract— Non-invasive evaluation of respiratory activity is an 

area of increasing research interest, resulting in the appearance 

of new monitoring techniques, ones of these being based on the 

analysis of the diaphragm mechanomyographic (MMGdi) 

signal. The MMGdi signal can be decomposed into two parts: 

(1) a high frequency activity corresponding to lateral vibration 

of respiratory muscles, and (2) a low frequency activity related 

to excursion of the thoracic cage. The purpose of this study was 

to apply the empirical mode decomposition (EMD) method to 

obtain the low frequency of MMGdi signal and selecting the 

intrinsic mode functions related to the respiratory movement. 

With this intention, MMGdi signals were acquired from a 

healthy subject, during an incremental load respiratory test, by 

means of two capacitive accelerometers located at left and right 

sides of rib cage. Subsequently, both signals were combined to 

obtain a new signal which contains the contribution of both 

sides of thoracic cage. Respiratory rate (RR) measured from 

the mechanical activity (RRMMG) was compared with that 

measured from inspiratory pressure signal (RRP). Results 

showed a Pearson’s correlation coefficient (r = 0.87) and a good 

agreement (mean bias = -0.21 with lower and upper limits of     

-2.33 and 1.89 breaths per minute, respectively) between 

RRMMG and RRP measurements. In conclusion, this study 

suggests that RR can be estimated using EMD for extracting 

respiratory movement from low mechanical activity, during an 

inspiratory test protocol.   

I. INTRODUCTION 

Mechanomyographic (MMG) signal is a non-invasive 
recording of the mechanical activity of skeletal muscles 
during contraction. Considered to be the mechanical 
counterpart of electrical activity of muscles, MMG signal 
reflects the lateral vibration of muscle fibers, and represents 
an alternative and a complementary tool for the study of 
muscles [1]. It has been studied in several muscles by means 
of accelerometers, piezoelectric sensors, laser distance 
sensors and microphones [2]. On the other hand, the 
diaphragm, a dome-shaped sheet of muscle, which separates 
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the thoracic and abdominal cavities, plays an important role 
in the respiratory function. The diaphragm 
mechanomyographic (MMGdi) signal is composed by a high 
frequency (HF) and a low frequency (LF) component. HF 
component, in a range of 5-25Hz [3], contains muscle 
vibration during a contraction and represents the diaphragm 
muscle fiber activation during inspiration. The LF 
component, in a range of 0-5Hz, represents the excursion of 
the thoracic cage during respiration due to the diaphragm 
contraction. LF component, modulated in amplitude and 
frequency, has proven to be useful for monitoring and 
extracting information from respiratory movements, in 
medical [4] and smartphone applications [5]. However, as 
well as many other biomedical signals, LF component can be 
corrupted by different sources of noise [6] and movement 
artifact [7], reducing its visual and automated analysis. 
Additionally, different morphologies have been observed in 
the LF component, which affects the evaluation of breathing 
patterns [8].  

Several techniques have been proposed to filter and 
smooth the LF component in order to reduce non-desired 
interferences. Hung et al. [9] estimated the respiratory 
waveform collected from a bi-axial accelerometer located in 
the chest in two subjects while they were sitting and lying. 
The spectrum of 1-min segment was calculated and then 
band-pass filtered using a set of rules around the peak 
frequency. In other related work, Pechprasarn and 
Pongnumkul [5] measured respiratory rate (RR) in one 
subject lying down using a smartphone placed over the chest. 
The respiratory signal was smoothed, detrended, the power 
spectrum was calculated and finally the peak frequency was 
obtained as an estimation of RR. In this line, Aoude et al. 
proposed a method for detection of pause, movement artifacts 
and asynchrony in uncalibrated inductance plethysmography 
(RIP) data from 19 post-surgery infants [7].  

The main filtering step used a bank of selective elliptic 
filters each with a 0.2 Hz pass-band and covering a range 
from 0 to 2 Hz. That filter that exhibited the highest power 
was chosen and then the breathing frequency corresponding 
to its central frequency was obtained.  

In the present study, a method based on the empirical 
mode decomposition (EMD) [10] is applied. The EMD 
algorithm does not make an a priori assumption about the 
signals and therefore, it is suitable for the analysis of 
nonlinear and nonstationary time-series. It has been designed 
to adaptively decompose the signal into a set of oscillatory 
components called intrinsic mode functions (IMFs). IMFs 
represent the oscillation modes embedded in the data 
(modulated in amplitude and frequency). IMFs are similar to 
trigonometric terms and wavelet coefficients obtained by 
Fourier and Wavelet analysis, respectively. In a previous 
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work of the group [11], Torres et al. analyzed MMGdi signals 
in an animal model, demonstrated that the first IMFs captured 
fast oscillations related to the HF vibratory activity of 
diaphragm muscle while respiratory movement LF 
component were concentrated in lasts IMF components. In 
this perspective, the approach of the present study is to apply 
EMD to MMGdi signals acquired with two single-axis 
capacitive accelerometers placed on the chest, in both 
hemidiaphragms, in order to obtain the LF component and 
estimate the respiratory rate. 

II. MATERIAL AND METHODS  

A. Signal recording and preprocessing 

 Measurements were taken in a healthy, non-smoking 
subject, with no relevant medical history of respiratory 
disease.  Prior to participation written consent was obtained 
from the subject and with the approval of Ethics Committee 
of Hospital del Mar, Barcelona. The MMGdi signal was 
recorded using two uni-axial capacitive accelerometers (K-
Beam 8312B2, Kistler, Switzerland), placed on the left 
(MMGdiL) the right (MMGdiR) sides of the thoracic cage, 
between the seventh and eighth intercostal space and lateral 
to the midclavicular line. Simultaneously, inspiratory 
pressure (IP) was acquired by means of a pressure transducer 
(Digima Premo 355, Special Instruments, Germany). Data 
were collected using a data acquisition system (MP100, 
Biopac Systems, Santa Barbara, CA, USA) at a sampling rate 
of 2 kHz, amplified, filtered, analogue to digital converted 
(12bit resolution) and then further decimated at a sampling 
rate of 200 Hz.  Furthermore, to obtain the low frequency 
component of respiratory activity, MMGdi signals were low-
pass filtered using a zero-phase fourth-order, Butterworth 
filter with a cut-off frequency of 5 Hz.  

B. Respiratory protocol 

 The subject was seated during the study and asked to 

breathe through a mouthpiece tube, while nostrils were 

occluded by a nose clip. Thereafter, the subject was 

instructed by the medical staff to breathe continuously and 

deep at a constant rate. During inspiration, increments in the 

IP signal (~10 cm H2O) were generated by the addition of 

weights (~50 g) to a valve every two-minute interval. In 

exhalation, there was not occlusion of the tube and the 

subject could normally breathe out. The increment in the IP 

can be translated into changes in the respiratory muscle 

effort.  

C. Empirical Mode Decomposition 

 Introduced by Huang et al., EMD is an adaptive method 

developed specially for the analysis of nonlinear and 

nonstationary signals [10] which has found application in 

biomedical data processing [12]. Without prior knowledge 

of the signal, EMD iteratively decomposes it into a set IMFs, 

which are amplitude and frequency modulated functions. 

Additionally, IMFs can be interpreted as a filter bank 

structure similar to that obtained via wavelet decomposition. 

By definition, an IMF must satisfy two conditions [10]: 

a) The number of extrema and the number of zero-crossing 

must be either equal or differ at most by one in the whole 

data set. 

b) At any point, the mean value of the envelope defined by 

local maxima and the envelope defined by local minima is 

zero. Briefly, the procedure involved in the EMD given a 

 ( ) signal is as follows [10]: 

1) Identify all the extrema of  ( ). Initialize   ( )   ( ). 
2) Construct the upper envelope   ( ) and the lower 

envelope   ( ) by interpolating all the local maxima and 

minima via cubic splines, respectively. 

3) Compute the average  ( )  (  ( )    ( ))  ⁄ . 

4)  Extract the detail   ( )     ( )   ( ). If   ( ) 
satisfies the two above criteria (a and b) for an IMF, then 

  ( )    ( ) becomes and IMF. Otherwise, return to the 

step 1 replacing  ( ) with   ( ). 
5) The residue   ( )    ( )    ( ) is taken as the original 

data  ( ). 
6) Repeat the steps 1-5 to obtain all possible IMFs. 

The iterative process terminates when   ( ) is either a 

constant, or a monotonic slope or a function with only one 

extrema. 

Finally, the original signal  ( ) is represented in terms of 

IMFs and the residue obtained with EMD method as: 

 ( )  ∑  ( )    ( )

 

   

                                                         ( ) 

where N is the number of IMFs, cn(t) the nth IMF and rN(t) is 

the final residue. In this work, the algorithm proposed by 

Rilling et al. [13]  for the implementation of the EMD was 

used. The two thresholds    and   , and the tolerance 

parameter  , were set as 0.05, 0.05 and 0.05, respectively.  

D. Frequency-based oscillatory components selection 

For the LF components of each MMGdi signal, EMD 
method was calculated for a 20-sec segment, stepped in 
increments of 10-sec. The EMD can present some drawbacks 
during its execution such as the end effects [13]. To reduce 
distortion at the start and the end, a 10-sec centered window 
was analyzed on the 20-sec segment. Three steps were 
subsequently applied. First, for each IMF, the power spectral 
density (PSD) was estimated through the periodogram 
method (Hamming window) and the maximum frequency 
(fmax) corresponding to the highest value of PSD was 
calculated. Then, IMFs were chosen and summed, if their 
corresponding fmax values were in the range from 0.1 to 0.7 
Hz to obtain a new segment based on oscillatory components. 
Second, the new segment was low-pass filtered using a zero-
phase fourth- order, elliptic filter with a pass-band ripple of 
0.3dB, and 50dB of attenuation in stop-band. The cut 
frequency of the filter was set as 1.15fmax of PSD. Third, the 
whole signal was low-pass filtered using a zero-phase fourth-
order, Butterworth filter with a cut-off frequency of 1 Hz.  

E. Data analysis 

 To evaluate the performance of the proposed method, the 

automated measurement of RR from IP signal and MMGdi 

signals were estimated and compared each 30-sec. RR from 

IP signal (RRP) was obtained by taking all its maxima and 

then calculating the average of the difference between them. 

RR from MMGdi signals (RRMMG) was calculated first 

combining left and right MMGdi components and then, 

calculating the maximum frequency of the spectrum. A 
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segment was discarded if, through visual inspection, it was 

corrupted by movement, cough or related artifacts. 

The degree of association between the mean of RRP and 

RRMMG values was calculated by Pearson’s correlation 

coefficient.  Moreover, the agreement between the two 

measurements was carried out by a Bland-Altman plot. The 

mean bias was calculated as the average of the difference 

between the mean RRP and RRMMG values, while the limit of 

agreement, the interval within which 95% of the differences 

between measurements by the two methods are expected to 

lie, was based on the mean difference ± 2 times the standard 

deviation of the difference. All computations were 

performed with MATLAB (v. R2011b, Natick, 

Massachusetts, USA). 

III. RESULTS 

Fig. 1 shows 20-sec of (a) the LF component MMGdi 
activity from left hemidiaphragm, (b-h) the application of 
EMD method and (i) the reconstruction of signal using the 
chosen IMFs (green color) and their corresponding 
spectrums. It is noted that a total of 6 IMFs and the residue 
were found to this segment of signal. The first components 
contain the higher oscillatory modes of the LF component (a 
wider spectrum) while the latter contain lower oscillatory 
modes (lower spectrum) and are more related to the 
respiratory movement. IMF components where chosen if the 
peak frequency of the spectrum was found in the range 
between 0.1 and 0.7 Hz. Fig. 2 depicts a 50-sec of 
simultaneous recording of (a) IP signal and both (b) left and 
(c) right LF components (red lines) during the incremental 
inspiratory load protocol. Also, raw mechanical activity 
(grey signals) was shown to note the waveforms and 
respiratory signal, which can difficult the proper evaluation 

respiratory movement. RR estimation was obtained from IP 
signal and the sum of left and right LF components obtained 
with EMD method. Fig. 3 illustrates the trend of the mean 
RR obtained by IP and the LF component during the 
inspiratory loading test for the healthy subject (~ 21 min of 
duration). It can be seen that both approaches were similar 
and exhibited a tendency to decrease and increases at the 
end, possible due to the distress of the test. On the other 
hand, the relationship between the mean RRP and RRLF 
values (Fig. 4a) was closer to the line of equality and shown 
a very strong linear association according to the Pearson 
correlation coefficient (      ). The Bland-Altman plot 
(Fig 4b) revealed a good agreement between the mean RRP 
and RRMMG values. It showed a mean difference (bias) of -
0.21 breaths per minute (bpm) with a lower and an upper 
limit of agreement of -2.33 and 1.89 bpm, respectively.  

 
Figure 1. Left panel: (a) A 10 s segment of LF component from left hemidiaphragm, (b-h) six IMFs and a residue from the application of EMD and (i) the 

reconstruction of signal from the chosen IMFs. Right panel: PSD of the signal and the oscillatory components from EMD.  An IMF was chosen in the case 

that fmax from PSD was in the range from 0.1 to 0.7 Hz (green color), otherwise the IMF was rejected (red color). The signal LF component of the signal 
was reconstructed by summing the chosen IMFs. 
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Figure 2. An excerpt of 50-sec of (a) IP signal, (b) left and (c) right 

mechanical hemidiaphragm activity during the incremental inspiratory load 

protocol.  Grey signals represent the raw mechanical activity and red signals 
resultant LF component from MMGdi signals. 
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IV. DISCUSSION AND CONCLUSION 

 

 This study aimed at evaluating the LF component of 

MMGdi signals in a healthy subject performing an 

inspiratory loading test, to extract respiratory movement 

from this mechanical activity. EMD method in conjunction 

with the use of classical filtering was applied to signals, 

acquired by means of a pair of capacitive accelerometers 

located at both sides of the rib cage. EMD is an adaptive 

method developed to analysis of non-linear and non-

stationary time-series which decomposes it in IMFs. In [11] 

was observed that HF components of MMGdi signals were 

found in the first IMFs while the last IMFs reflected the 

respiratory movement. As expected, the collected signals are 

contaminated by different sources of noise [6], movement 

artifact [7], and waveforms [8] which difficult visual and 

automated tasks. Most of the relevant studies in literature 

calculates the peak of the spectrum of a signal based on 

band-pass filtering adjusted by a set of rules [9], smoothing 

and detrending the signals [5] or using a series of selective 

filtering bank [7] to obtain LF component. In this work, left 

and right mechanical activity was combined to obtain the 

contribution of both sides.  However, it could be possible to 

choose only one side for RR evaluation. Overall, our results 

have shown a strong correlation (r = 0.86) according to the 

Pearson’s correlation coefficient. Furthermore, a good 

agreement was obtained by Bland-Altman with a bias of -

0.21 bpm and limits of agreement -2.33 and 1.89 bpm. These 

results agree with a recent study conducted by Lapi et al, in 

which they preliminarily have reported that body size or 

thoracic deformities do not affect the measure of RR [4]. 

Finally, the proposed method can be more restrictive by not 

only use the fmax in the selection of IMF, but also taking into 

account the mean and median frequency from PSD.  

In summary, this study highlights that RR can be 

estimated using capacitive accelerometers and EMD for 

extracting the respiratory movement from diaphragm 

mechanical activity. Therefore, the proposed technique 

could be a complementary tool for estimation of RR, 

acquiring respiratory movement in clinical applications. The 

results of this study need to be confirmed in a large number 

of subjects and tested in different scenarios.  

REFERENCES 

[1] C. Orizio, “Muscle sound: bases for the introduction of a 

mechanomyographic signal in muscle studies,” Crit Rev Biomed Eng, 

vol. 21, no. 3, pp. 201–243, 1993. 
[2] M. A. Islam, K. Sundaraj, R. B. Ahmad, and N. U. Ahamed, 

“Mechanomyogram for muscle function assessment: a review,” PLoS 

One, vol. 8, no. 3, p. e58902, Jan. 2013. 
[3] L. Sarlabous, A. Torres, J. Fiz, J. Morera, and R. Jané, “Index for 

estimation of muscle force from mechanomyography based on the 

Lempel-Ziv algorithm,” J Electromyogr Kinesiol, vol. 23, no. 3, pp. 
548–557, Jul. 2013. 

[4] S. Lapi, F. Lavorini, G. Borgioli, M. Calzolai, L. Masotti, M. Pistolesi, 

and G. a Fontana, “Respiratory rate assessments using a dual-
accelerometer device,” Respir Physiol Neurobiol, vol. 191, pp. 60–66, 

Jan. 2014. 

[5] T. Pechprasarn and S. Pongnumkul, “Estimation of respiratory rate 
from smartphone’s acceleration data,” 10th Int Conf Electr Eng 

Comput Telecommun Inf Technol 2013, pp. 1–5, May 2013. 

[6] S. Golemati, I. Moupagiatzis, D. Athanasopoulos, M. Vasilopoulou, 
C. Roussos, and I. Vogiatzis, “Comparative analysis of phase 

difference estimation methods quantifying asynchronies between 

compartmental chest wall volume signals,” in Proc 31th Annu Int 
Conf IEEE EMBS, 2009, pp. 2871–2874. 

[7] A. A. Aoude, R. E. Kearney, K. A. Brown, H. L. Galiana, and C. A. 

Robles-Rubio, “Automated off-line respiratory event detection for the 
study of postoperative apnea in infants,” IEEE Trans Biomed Eng, vol. 

58, no. 6, pp. 1724–1733, Jun. 2011. 

[8] G. K. Prisk, J. Hammer, and C. J. L. Newth, “Techniques for 
measurement of thoracoabdominal asynchrony,” Pediatr Pulmonol, 

vol. 34, no. 6, pp. 462–472, Dec. 2002. 

[9] P. Hung, S. Bonnet, R. Guillemaud, E. Castelli, and P. T. N. Yen, 
“Estimation of respiratory waveform using an accelerometer,” in 

Proc. IEEE Int. Symp. Biomed. Imaging: From Nano to Macro, 2008, 

pp. 1493–1496. 
[10] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, 

N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode 

decomposition and the Hilbert spectrum for nonlinear and non-
stationary time series analysis,” Proc R Soc A Math Phys Eng Sci, vol. 

454, no. 1971, pp. 903–995, Mar. 1998. 

[11] A. Torres, J. a Fiz, R. Jané, J. B. Galdiz, J. Gea, and J. Morera, 
“Application of the empirical mode decomposition method to the 

analysis of respiratory mechanomyographic signals.,” in Proc 29th 

Annu Int Conf IEEE EMBS,, 2007, pp. 1566–1569. 
[12] M. Wu and N. E. Huang, “Biomedical data processing using HHT: A 

review,” in Advanced Biosignal Processing, A. Naït-Ali, Ed. Berlin, 

Heidelberg: Springer Berlin Heidelberg, 2009, pp. 335–352. 
[13] G. Rilling, P. Flandrin, P. Gon, and D. Lyon, “On empirical mode 

decomposition and its algorithms,” in IEEE-EURASIP Workshop 

Nonlinear Signal Image Processing (NSIP), 2003, pp. 8–11.  

 
Figure 3. Trend of the mean RRP and RRLF values during the inspiratory 

loading test. bpm: breaths per minute.  

 

 
Figure 4. (a) Degree of association and (b) Bland-Altman plot for 

agreement between the mean RRP and RRLF values. bpm: breaths per 

minute, SD: standard deviation. 
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