
Intrinsic Dimensionality of Extracellular Action Potentials

Kathryn Scannell1, Agnieszka F. Szymanska2, and Zoran Nenadic2,3

Abstract— Linear approaches to low-dimensional feature ex-
traction may not be appropriate when statistical data are
generated by a nonlinear interaction of parameters. Equally
inadequate are linear methods for determining the dimension of
the feature space. This article estimates the intrinsic dimension
of extracellular action potentials (EAPs), which can be viewed
as the minimum number of nonlinearly interacting parameters
sufficient to describe the data. When combined with nonlinear
feature extraction methods, this information may lead to a more
faithful, low-dimensional EAP representation. These points are
demonstrated using EAPs recorded experimentally by a multi-
sensor electrode.

I. INTRODUCTION

Extracellular recording of action potentials represents a
core activity in experimental neuroscience [1]. It enables be-
havior and electrophysiology to be linked at a single-neuron
resolution. Before extracellular action potentials (EAPs) can
be interpreted, they must be detected in recordings that
contain biological and non-biological noise [2]. As a single
extracellular electrode often senses signals from multiple
neurons, EAPs must also be classified according to their
neuron of origin [3]. This is especially important in multi-
sensor electrodes [4], capable of simultaneous recording
from a dozen or more neurons [5].

Classification of EAPs is typically preceded by extraction
of low-dimensional data features, which facilitates their more
accurate statistical description and classification [6]. A classi-
cal approach to this problem assumes that n-dimensional data
are confined to a d-dimensional subspace (d≪ n) which can
be recovered by a suitable linear transformation, followed
by the truncation of n − d noise features. In the context
of EAP classification, the best known representatives of this
approach are principal component analysis (PCA) [7], [8]
and the wavelet transform (WT) [9], [10]. The dimension of
the signal subspace d is typically determined by discarding
the principal eigenvalues (wavelet coefficients) which fall
below a suitably chosen threshold.

When n-dimensional statistical data depend nonlinearly
on d parameters, the above linear approaches may not be
appropriate as the data lie on a d-dimensional hypersurface
(manifold). This observation has inspired the proliferation
of nonlinear feature extraction techniques such as locally
linear embedding [11], Isomap [12], diffusion maps [13], and
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many more. Unlike linear approaches that utilize global data
properties, nonlinear methods extract features by preserving
the local neighborhood of each data point. The approach to
estimating the number of underlying parameters, d, must then
be modified accordingly.

This article presents an algorithm to estimate intrinsic
dimensionality of EAPs. This step may be viewed as de-
termining the dimension of a possibly nonlinear feature
“space” in which EAP classification is to be performed.
When combined with nonlinear feature extraction techniques
and classifiers that exploit local data properties (e.g. a nearest
neighbor classifier), this approach may hold advantage over
traditional linear techniques. These points will be elaborated
upon below, and the algorithm will be illustrated on EAPs
experimentally recorded by a 4-sensor electrode (tetrode).

II. INTRINSIC DIMENSIONALITY

A. Motivation

To motivate the concept of an intrinsic dimension, let us
consider a model of an EAP given by:

s(t) = e−
t
τ sin

(

2πt

T

)

+ η(t) (1)

where τ is a decay time constant, T is a period of os-
cillations, and η is temporally correlated noise. Note that
s depends nonlinearly on τ and T . A collection of EAPs
can be generated by drawing τ and T from a uniform
distribution with a mean of 0.5 ms and 1.5 ms, respectively,
and a standard deviation of 10% of the mean. The standard
deviation of η is set at 2.5% of the peak value of s. Fig. 1
shows EAPs simulated in this manner, as well as their
intrinsic dimension estimated by the algorithm (details in
Section II-B). Since the waveforms are parametrized by τ
and T , the intrinsic dimension, dI = 2, is correctly estimated
when 13 or more nearest neighbors are used.

Fig. 1. (Left) 40 EAPs simulated according to (1) with a sampling rate of
15 kHz. (Right) Estimated intrinsic dimension as a function of the number of
nearest neighbors. The solid line represent the median over 10 simulations,
rounded to the nearest whole number. The shaded region marks the range
of intrinsic dimensions across 10 simulations.
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B. Intrinsic Dimension Calculation

Our methodology follows closely the original algorithm
of Pettis et al. [14]. The main idea behind their approach is
that the number of data points in a d-dimensional hyperball
of radius R is proportional to Rd. A similar idea has
led to the concept of a correlation dimension in nonlinear
dynamics [15].

Assume that sj ∈ R
n (j = 1, 2, · · · , N ) is a collection

of EAPs, where n is the dimension and N is the number
of EAPs. In the first step, the Euclidean distances between
sj and its K nearest neighbors are found, where K ≥ 2 is
a conveniently chosen number of neighbors. Denote these
distances by rk,sj (k = 1, 2, · · · ,K; j = 1, 2, · · · , N ).
By linking the probability density function of rk,s and the
number of neighbors of s in a d-dimensional space, Pettis et
al. arrive at the following relationship [14]:

log(r̄kGk,d) =
1

d
log(k) + log(Cn), ∀k = 1, 2, · · · ,K (2)

where

Gk,d = k
1

d
Γ(k)

Γ
(

k + 1

d

) , (3)

r̄k = 1

N

∑N

j=1
rk,sj , and Cn is a term that is independent

of k. Note that Γ(·) in (3) denotes the gamma function.
The algorithm proceeds by fitting a regression line in (2),
with log(1), log(2), · · · , log(K) as independent variables,
and log(r̄1G1,d), log(r̄2G2,d), · · · , log(r̄KGK,d) as depen-
dent ones. The intrinsic dimension, dI , is then found as the
inverse of the regression slope. Note that the intercept term,
log(Cn), can also be estimated in this process, although it
is not used in dI calculations. Also note that since Gk,d

depends on d, the regression slope must be found iteratively.
The initial estimate, d̂0, can be found from (2) by assuming
log(Gk,d) = 0 and solving for d as done in [14], or as
d̂0 = 1

K−1

∑K−1

k=1
d̂0,k, where based on [16], we have:

d̂0,k ≈
1

k

r̄k
r̄k+1 − r̄k

, ∀k = 1, 2, · · · ,K − 1

The latter approach was taken in the present study, although
the choice of d̂0 did not significantly affect the performance.
The iteration process was terminated once |d̂i− d̂i−1| < dtol

was satisfied, where dtol is a suitably chosen tolerance (0.01
in the present study). The algorithm can be summarized as
follows:

(a) begin set: K ∈ N, dtol ∈ R, imax ∈ N

(b) get EAPs: s1, s2, · · · , sN ∈ R
n

(c) compute: rk,sj , k = 1, 2, · · · ,K, j = 1, 2, · · · , N

(d) compute: r̄k = median1≤j≤N{rk,sj}, d̂0
(e) initialize i← 0, ∆d = dtol, d̂ = d̂0
(f) while (|∆d| ≥ dtol and i ≤ imax)
(g) compute: log(G

k,d̂
), ∀k [see (3)]

(h) compute: S = regress(log(r̄kGk,d̂
), log(k)) [see (2)]

(i) update: dold = d̂, d̂ = 1

S
, ∆d = d̂− dold, i← i+ 1

(j) end
(k) return dI(K) = d̂
(l) end

To increase the robustness of the algorithm, Pettis et
al. [14] discarded the samples of rk,sj that were one standard
deviation above the mean, and then re-estimated the mean r̄k.
The problem with this approach is that the outlier threshold
itself is susceptible to outliers, hence a robust estimate of the
mean, r̄k, was obtained by taking the median [step (d)].

The algorithm is typically run for a range of nearest
neighbors K ∈ [2,Kmax] (e.g. Fig. 1). To obtain confidence
intervals on these estimates, the algorithm may be run
multiple times (with novel data), and dI(K) can be found
by averaging. Since the intrinsic dimension is expected to
be a whole number, the values of dI(K) should be rounded.
For a sufficiently large number of samples, dI(K) tends to
remain stable over a wide range of nearest neighbors (Fig. 1),
and the overall intrinsic dimension can be taken as the most
frequent value across K.

III. RESULTS

A. Experimental Data

Data consist of recordings from the antennal lobe of an
adult locust [17]. The data were collected with a planar 4-
sensor silicon electrode (tetrode) and their 20-s-long segment
is publicly available from [18]. The signals were amplified,
band-pass filtered (300-5,000 Hz), and sampled at 15 kHz.

Fig. 2. Six EAP classes shown in different colors with 4 panels representing
different tetrode sensors. Each trace is 2 ms long. The number of EAPs in
each class is shown in the middle. Note that 185 outliers have been removed.

EAPs were detected in an unsupervised manner using
the continuous WT method described in [2]. This resulted
in detecting 1030 EAPs (result comparable to a supervised
detection method in [19]). The EAPs were aligned [10], and
2 ms of data centered at the EAP peak were extracted. To
facilitate further analysis, the EAPs were represented in the
wavelet domain using bior1.3 wavelet class [2], [20], and
classified using the top 15 wavelet coefficients. Our prior
study [19] has revealed 6 EAP classes in these data, and
so k-means clustering (k = 6) was performed in the 15-
D wavelet space. The results of classification are shown in
Fig. 2. Note that the classification results will not be used
in intrinsic dimension calculation—their only role is to help
with the interpretation of results.
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B. Intrinsic Dimension of Extracellular Action Potentials

Upon outlier removal, the remaining 845 EAPs (Fig. 2)
were reshaped into a vector form and used to estimate dI as
follows. For each K ∈ [2,Kmax], the EAPs were randomly
split into 10 groups (with 84–85 EAPs per group), and
dI(K) was estimated as in Section II-B based on EAPs
from 9 groups (one group withheld). Note that this limits
the number of nearest neighbors to Kmax < 760. The above
procedure was repeated each time withholding a different
group, and the overall dI(K) was found as the median over
these 10 values rounded to the nearest whole number. To
remove randomization bias, the EAP group assignment was
re-randomized for each K. The results are shown if Fig. 3,
where dI(K) drops steadily with K, ultimately reaching a
plateau, dI = 4, in the range K ∈ [298, 715]. The histogram
of dI(K) also shows that dI = 4 is the most frequent value,
and so it can be concluded that the intrinsic dimensionality
of the set of EAPs shown in Fig. 2 is 4.

Fig. 3. Intrinsic dimension, dI , as a function of the number of nearest
neighbors K ∈ [2, 759]. Shaded regions represent confidence intervals
estimated in the same way as in Fig. 1. (Inset) The histogram of dI
(truncated at dI = 15), showing a dominant mode at dI = 4.

The tight dI confidence intervals (Fig. 3) suggest that dI
can be reliably estimated without subsampling and group
randomization. This was confirmed by calculating dI using
all available data (single run), which resulted in a distribution
of dI nearly identical to the one in Fig. 3. Similarly, the
results did not change when the calculations were repeated
with 5%, 10%, 25% and 50% of EAPs (data not shown in
the interest of space), as long as all 6 groups of EAPs were
sufficiently represented in the sample. Therefore, the intrinsic
dimensionality of this dataset is largely independent of the
sample size.

It may be tempting to conclude that the intrinsic dimension
of this dataset is somehow constrained by the number of
sensors used. To show that this is not the case, we repeated
the above analysis with various combinations of sensors (see
Table I). It can be seen that 3-sensor combinations yielded
similar dI estimates, although the histograms of dI (not

TABLE I

dI FOR A DIFFERENT COMBINATION OF SENSORS.

sensors: 1,2,3 1,2,4 1,3,4 2,3,4 1 2 3 4

dI : 4 4 5 4 5 3 8 4

shown) were much more broadly distributed, with dI = 5
being the close second choice. An exception was the sensor
combination (1,3,4) for which dI = 5 (frequency: ∼40%),
with dI = 4 (∼32%) as the second best candidate. When
single-sensor data were used, the distribution of dI was even
broader, with the dI values of 3, 4, and 5, often being nearly
tied. A notable exception is the sensor 3 for which dI = 8.
This could be potentially explained by a higher noise level
at the sensor 3, as established previously in [21] (see also
Fig. 2). Namely, the presence of a strong noise in data may
cause the algorithm to treat noise variances and correlations
as additional data parameters [14].

C. Feature Extraction and Classification

Since dI represents the intrinsic or topological dimension
of an EAP hypersurface, nonlinear feature extraction meth-
ods are preferred in order to “flatten” the manifold into a dI -
dimensional Euclidean subspace. While many techniques can
be used to accomplish this goal, we chose the diffusion maps
(DM) approach [13] because of its simplicity and flexibility.
The method works by forming a graph connectivity matrix
G = GT ∈ R

N×N , whose (i,j)-th element is:

g(i, j) = e−
‖si−sj‖

2

2D2 , ∀i ≥ j = 1, 2, · · · , N

and D is a parameter that controls the strength of local in-
teractions. The connectivity matrix is then converted into the
transition probability matrix, P ∈ R

N×N , of an underlying
Markov chain by: p(i, j) := g(i, j)/

∑N

j=1
g(i, j). Note that

∑

j p(i, j) = 1. The set of N EAPs can then be represented
by a feature matrix F ∈ R

dI×N . Its rows are diffusion
coordinates defined by [13]: fi := λiψ

T
i (i = 1, 2, · · · , dI ),

where 1 = λ0 > |λ1| ≥ |λ2| ≥ · · · are the eigenvalues of
P , and ψi ∈ R

N are the corresponding eigenvectors.
The representation of the 845 EAPs with dI = 4 diffusion

coordinates is shown in Fig. 4. The interaction parameter
was D = 3.5σ, where σ is a robust (median-based) estimate
of the standard deviation of ‖si− sj‖ (∀i ≥ j). Several pro-
jections, e.g. f1–f2, f1–f4, and f2–f4, reveal the underlying
6-class data structure. In contrast, PCA (see Fig. 5), which is
a linear technique, reveals good clustering in f1–f2, and to
some extent in f2–f4 projection. Another linear method, WT
(not shown), produced multiple projections with 6 clusters,
however the cluster overlaps were significant.

To assess the class separability, we performed the k nearest
neighbor (kNN) classification in the respective 4-D sub-
spaces, while using the classification results in Section III-
A as the ground truth. For all 3 methods (DM, PCA, and
WT), the classification was performed using a leave-one-out
approach, i.e. a single EAP was classified based on the class
membership of its kNN (k = 1, 3, · · · , 23) according to the
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Fig. 4. Various 2-D projections of scatter plots showing the 845 EAPs.
The features f1, f2, f3, and f4, were extracted using diffusion maps [13].
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Fig. 5. Equivalent to Fig. 4, with f1, f2, f3, and f4, extracted by PCA.

majority rule. The predicted class label was then compared
to the class label of the EAP in question, as determined
in Section III-A. This procedure was repeated by looping
over all EAPs, and the total number of misclassified EAPs
was reported in Table II. In general, the classification results

TABLE II

COMPARISON OF CLASSIFICATION ERRORS FOR DM, PCA, AND WT.

k 1 3 5 7 9 11 13 15 17 19 21 23 mean

DM 3 3 1 1 1 1 1 3 3 4 4 4 2.42
PCA 5 4 3 4 3 4 4 4 3 4 4 4 3.83
WT 14 12 11 11 12 12 13 14 13 13 14 13 12.67

based on DM features were superior to those of PCA and
WT over a range of k, reducing the error by > 66%. Similar
results were achieved with both D = 4.0σ and D = 4.5σ.

IV. CONCLUSIONS

The algorithm to estimate the intrinsic dimension of sta-
tistical data was applied to EAPs recorded by a tetrode. It

produced stable estimates of the intrinsic dimension, dI = 4,
across a wide range of samples, N , and nearest neighbors, K.
Combined with the diffusion maps approach, this information
led to a faithful representation of EAPs in a 4-D space,
unambiguously revealing 6 distinct EAP clusters. When
compared to its linear counterparts, such as PCA and WT,
it also yielded a substantial reduction in classification errors,
as judged by the kNN classifier. Finding a faithful low-
dimensional data representation may also be useful in other
neural signal processing applications. Our future work will
be directed at analysis of additional EAP data as well as
other types of electrophysiological signals.
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